Giardia duodenalis: Biology and Pathogenesis (2024)

1. Adam RD. 2001. Biology of Giardia lamblia. Clin Microbiol Rev14:447–475. doi: 10.1128/CMR.14.3.447-475.2001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Adam RD. 2017. Diplomonadida. InArchibald JM, Simpson AGB, Slamovits CH (ed), Handbook of the protists. Springer, Cham, Switzerland. [Google Scholar]

3. Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA. 1989. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science243:75–77. doi: 10.1126/science.2911720. [PubMed] [CrossRef] [Google Scholar]

4. Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ, Davids BJ, Dawson SC, Elmendorf HG, Hehl AB, Holder ME, Huse SM, Kim UU, Lasek-Nesselquist E, Manning G, Nigam A, Nixon JE, Palm D, Passamaneck NE, Prabhu A, Reich CI, Reiner DS, Samuelson J, Svard SG, Sogin ML. 2007. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science317:1921–1926. doi: 10.1126/science.1143837. [PubMed] [CrossRef] [Google Scholar]

5. Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, van der Giezen M, Hernandez M, Muller M, Lucocq JM. 2003. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature426:172–176. doi: 10.1038/nature01945. [PubMed] [CrossRef] [Google Scholar]

6. Hegner RW. 1926. The biology of host-parasite relationships among protozoa living in man. Q Rev Biol1:393–418. doi: 10.1086/394252. [CrossRef] [Google Scholar]

7. Filice FP. 1952. Studies on the cytology and life history of a Giardia from the laboratory rat. University of California Press, Berkeley, CA. [Google Scholar]

8. Bertram MA, Meyer EA, Lile JD, Morse SA. 1983. A comparison of isozymes of five axenic Giardia isolates. J Parasitol69:793–801. doi: 10.2307/3281031. [PubMed] [CrossRef] [Google Scholar]

9. Korman SH, Le Blancq SM, Spira DT, el On J, Reifen RM, Deckelbaum RJ. 1986. Giardia lamblia: identification of different strains from man. Z Parasitenkd72:173–180. doi: 10.1007/BF00931144. [PubMed] [CrossRef] [Google Scholar]

10. Nash TE, Keister DB. 1985. Differences in excretory-secretory products and surface antigens among 19 isolates of Giardia. J Infect Dis152:1166–1171. doi: 10.1093/infdis/152.6.1166. [PubMed] [CrossRef] [Google Scholar]

11. Nash TE, McCutchan T, Keister D, Dame JB, Conrad JD, Gillin FD. 1985. Restriction-endonuclease analysis of DNA from 15 Giardia isolates obtained from humans and animals. J Infect Dis152:64–73. doi: 10.1093/infdis/152.1.64. [PubMed] [CrossRef] [Google Scholar]

12. Baruch AC, Isaac-Renton J, Adam RD. 1996. The molecular epidemiology of Giardia lamblia: a sequence-based approach. J Infect Dis174:233–236. doi: 10.1093/infdis/174.1.233. [PubMed] [CrossRef] [Google Scholar]

13. Read CM, Monis PT, Thompson RC. 2004. Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR-RFLP. Infect Genet Evol4:125–130. doi: 10.1016/j.meegid.2004.02.001. [PubMed] [CrossRef] [Google Scholar]

14. Wielinga CM, Thompson RC. 2007. Comparative evaluation of Giardia duodenalis sequence data. Parasitology134:1795–1821. doi: 10.1017/S0031182007003071. [PubMed] [CrossRef] [Google Scholar]

15. Caccio SM, Beck R, Lalle M, Marinculic A, Pozio E. 2008. Multilocus genotyping of Giardia duodenalis reveals striking differences between assemblages A and B. Int J Parasitol38:1523–1531. doi: 10.1016/j.ijpara.2008.04.008. [PubMed] [CrossRef] [Google Scholar]

16. Franzen O, Jerlstrom-Hultqvist J, Castro E, Sherwood E, Ankarklev J, Reiner DS, Palm D, Andersson JO, Andersson B, Svard SG. 2009. Draft genome sequencing of Giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species?PLoS Pathog5:e1000560. doi: 10.1371/journal.ppat.1000560. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Adam RD, Dahlstrom EW, Martens CA, Bruno DP, Barbian KD, Ricklefs SM, Hernandez MM, Narla NP, Patel RB, Porcella SF, Nash TE. 2013. Genome sequencing of Giardia lamblia genotypes A2 and B isolates (DH and GS) and comparative analysis with the genomes of genotypes A1 and E (WB and Pig). Genome Biol Evol5:2498–2511. doi: 10.1093/gbe/evt197. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Jerlstrom-Hultqvist J, Franzen O, Ankarklev J, Xu F, Nohynkova E, Andersson JO, Svard SG, Andersson B. 2010. Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate. BMC Genomics11:543. doi: 10.1186/1471-2164-11-543. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Kooyman FNJ, Wagenaar JA, Zomer A. 2019. Whole-genome sequencing of dog-specific assemblages C and D of Giardia duodenalis from single and pooled cysts indicates host-associated genes. Microb Genom5:12. doi: 10.1099/mgen.0.000302. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Tsui CK, Miller R, Uyaguari-Diaz M, Tang P, Chauve C, Hsiao W, Isaac-Renton J, Prystajecky N. 2018. Beaver fever: whole-genome characterization of waterborne outbreak and sporadic isolates to study the zoonotic transmission of giardiasis. mSphere3:e00090-18. doi: 10.1128/mSphere.00090-18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Sprong H, Caccio SM, van der Giessen JW, ZOOPNET network and partners.2009. Identification of zoonotic genotypes of Giardia duodenalis. PLoS Negl Trop Dis3:e558. doi: 10.1371/journal.pntd.0000558. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Ankarklev J, Lebbad M, Einarsson E, Franzen O, Ahola H, Troell K, Svard SG. 2018. A novel high-resolution multilocus sequence typing of Giardia intestinalis assemblage A isolates reveals zoonotic transmission, clonal outbreaks and recombination. Infect Genet Evol60:7–16. doi: 10.1016/j.meegid.2018.02.012. [PubMed] [CrossRef] [Google Scholar]

23. Monis PT, Caccio SM, Thompson RC. 2009. Variation in Giardia: towards a taxonomic revision of the genus. Trends Parasitol25:93–100. doi: 10.1016/j.pt.2008.11.006. [PubMed] [CrossRef] [Google Scholar]

24. Tibayrenc M, Ayala FJ. 2014. Cryptosporidium, Giardia, Cryptococcus, Pneumocystis genetic variability: cryptic biological species or clonal near-clades?PLoS Pathog10:e1003908. doi: 10.1371/journal.ppat.1003908. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Erlandsen SL, Bemrick WJ, Pawley J. 1989. High-resolution electron microscopic evidence for the filamentous structure of the cyst wall in Giardia muris and Giardia duodenalis. J Parasitol75:787–797. doi: 10.2307/3283065. [PubMed] [CrossRef] [Google Scholar]

26. Jarroll EL, Manning P, Lindmark DG, Coggins JR, Erlandsen SL. 1989. Giardia cyst wall-specific carbohydrate: evidence for the presence of galactosamine. Mol Biochem Parasitol32:121–131. doi: 10.1016/0166-6851(89)90063-7. [PubMed] [CrossRef] [Google Scholar]

27. Paget TA, Jarroll EL, Manning P, Lindmark DG, Lloyd D. 1989. Respiration in the cysts and trophozoites of Giardia muris. J Gen Microbiol135:145–154. doi: 10.1099/00221287-135-1-145. [PubMed] [CrossRef] [Google Scholar]

28. Coffey CM, Collier SA, Gleason ME, Yoder JS, Kirk MD, Richardson AM, Fullerton KE, Benedict KM. 2021. Evolving epidemiology of reported giardiasis cases in the United States, 1995–2016. Clin Infect Dis72:764–770. doi: 10.1093/cid/ciaa128. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Bingham AK, Meyer EA. 1979. Giardia excystation can be induced in vitro in acidic solutions. Nature277:301–302. doi: 10.1038/277301a0. [PubMed] [CrossRef] [Google Scholar]

30. Rice EW, Schaefer FW. 1981. Improved in vitro excystation procedure for Giardia lamblia cysts. J Clin Microbiol14:709–710. doi: 10.1128/jcm.14.6.709-710.1981. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Feely DE, Gardner MD, Hardin EL. 1991. Excystation of Giardia muris induced by a phosphate-bicarbonate medium: localization of acid phosphatase. J Parasitol77:441–448. doi: 10.2307/3283133. [PubMed] [CrossRef] [Google Scholar]

32. Cook GC. 1985. Infective gastroenteritis and its relationship to reduced gastric acidity. Scand J Gastroenterol111:17–23. doi: 10.3109/00365528509093751. [PubMed] [CrossRef] [Google Scholar]

33. Reynaert H, Fernandes E, Bourgain C, Smekens L, Devis G. 1995. Proton-pump inhibition and gastric giardiasis: a causal or casual association?J Gastroenterol30:775–778. doi: 10.1007/BF02349646. [PubMed] [CrossRef] [Google Scholar]

34. Barash NR, Nosala C, Pham JK, McInally SG, Gourguechon S, McCarthy-Sinclair B, Dawson SC. 2017. Giardia colonizes and encysts in high-density foci in the murine small intestine. mSphere2:e00343-16. doi: 10.1128/mSphere.00343-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Schupp DG, Januschka MM, Sherlock LA, Stibbs HH, Meyer EA, Bemrick WJ, Erlandsen SL. 1988. Production of viable Giardia cysts in vitro: determination by fluorogenic dye staining, excystation, and animal infectivity in the mouse and Mongolian gerbil. Gastroenterology95:1–10. doi: 10.1016/0016-5085(88)90283-1. [PubMed] [CrossRef] [Google Scholar]

36. Sterling CR, Kutob RM, Gizinski MJ, Verastegui M, Stetzenbach L. 1988. Giardia detection using monoclonal antibodies recognizing determinants of in vitro derived cysts, p 219–222. In Wallis PM, Hammond BR (ed), Advances in Giardia research. University of Calgary Press, Calgary, Canada. [Google Scholar]

37. Gillin FD, Reiner DS, Gault MJ, Douglas H, Das S, Wunderlich A, Sauch JF. 1987. Encystation and expression of cyst antigens by Giardia lamblia in vitro. Science235:1040–1043. doi: 10.1126/science.3547646. [PubMed] [CrossRef] [Google Scholar]

38. Boucher SE, Gillin FD. 1990. Excystation of in vitro-derived Giardia lamblia cysts. Infect Immun58:3516–3522. doi: 10.1128/iai.58.11.3516-3522.1990. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Kane AV, Ward HD, Keusch GT, Pereira ME. 1991. In vitro encystation of Giardia lamblia: large-scale production of in vitro cysts and strain and clone differences in encystation efficiency. J Parasitol77:974–981. doi: 10.2307/3282752. [PubMed] [CrossRef] [Google Scholar]

40. Lujan HD, Mowatt MR, Nash TE. 1997. Mechanisms of Giardia lamblia differentiation into cysts. Microbiol Mol Biol Rev61:294–304. doi: 10.1128/mmbr.61.3.294-304.1997. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Reiner DS, McCaffery M, Gillin FD. 1990. Sorting of cyst wall proteins to a regulated secretory pathway during differentiation of the primitive eukaryote, Giardia lamblia. Eur J Cell Biol53:142–153. [PubMed] [Google Scholar]

42. Faso C, Bischof S, Hehl AB. 2013. The proteome landscape of Giardia lamblia encystation. PLoS One8:e83207. doi: 10.1371/journal.pone.0083207. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Palm D, Weiland M, McArthur AG, Winiecka-Krusnell J, Cipriano MJ, Birkeland SR, Pacocha SE, Davids B, Gillin F, Linder E, Svard S. 2005. Developmental changes in the adhesive disk during Giardia differentiation. Mol Biochem Parasitol141:199–207. doi: 10.1016/j.molbiopara.2005.03.005. [PubMed] [CrossRef] [Google Scholar]

44. Bernander R, Palm JE, Svard SG. 2001. Genome ploidy in different stages of the Giardia lamblia life cycle. Cell Microbiol3:55–62. doi: 10.1046/j.1462-5822.2001.00094.x. [PubMed] [CrossRef] [Google Scholar]

45. DuBois KN, Abodeely M, Sakanari J, Craik CS, Lee M, McKerrow JH, Sajid M. 2008. Identification of the major cysteine protease of Giardia and its role in encystation. J Biol Chem283:18024–18031. doi: 10.1074/jbc.M802133200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Ward W, Alvarado L, Rawlings ND, Engel JC, Franklin C, McKerrow JH. 1997. A primitive enzyme for a primitive cell: the protease required for excystation of Giardia. Cell89:437–444. doi: 10.1016/S0092-8674(00)80224-X. [PubMed] [CrossRef] [Google Scholar]

47. Touz MC, Nores MJ, Slavin I, Carmona C, Conrad JT, Mowatt MR, Nash TE, Coronel CE, Lujan HD. 2002. The activity of a developmentally regulated cysteine proteinase is required for cyst wall formation in the primitive eukaryote Giardia lamblia. J Biol Chem277:8474–8481. doi: 10.1074/jbc.M110250200. [PubMed] [CrossRef] [Google Scholar]

48. Birkeland SR, Preheim SP, Davids BJ, Cipriano MJ, Palm D, Reiner DS, Svard SG, Gillin FD, McArthur AG. 2010. Transcriptome analyses of the Giardia lamblia life cycle. Mol Biochem Parasitol174:62–65. doi: 10.1016/j.molbiopara.2010.05.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Morf L, Spycher C, Rehrauer H, Fournier CA, Morrison HG, Hehl AB. 2010. The transcriptional response to encystation stimuli in Giardia lamblia is restricted to a small set of genes. Eukaryot Cell9:1566–1576. doi: 10.1128/EC.00100-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Davids BJ, Reiner DS, Birkeland SR, Preheim SP, Cipriano MJ, McArthur AG, Gillin FD. 2006. A new family of giardial cysteine-rich non-VSP protein genes and a novel cyst protein. PLoS One1:e44. doi: 10.1371/journal.pone.0000044. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Eckmann L, Laurent F, Langford TD, Hetsko ML, Smith JR, Kagnoff MF, Gillin FD. 2000. Nitric oxide production by human intestinal epithelial cells and competition for arginine as potential determinants of host defense against the lumen-dwelling pathogen Giardia lamblia. J Immunol164:1478–1487. doi: 10.4049/jimmunol.164.3.1478. [PubMed] [CrossRef] [Google Scholar]

52. Carranza PG, Gargantini PR, Prucca CG, Torri A, Saura A, Svard S, Lujan HD. 2016. Specific histone modifications play critical roles in the control of encystation and antigenic variation in the early-branching eukaryote Giardia lamblia. Int J Biochem Cell Biol81:32–43. doi: 10.1016/j.biocel.2016.10.010. [PubMed] [CrossRef] [Google Scholar]

53. Frontera LS, Moyano S, Quassollo G, Lanfredi-Rangel A, Ropolo AS, Touz MC. 2018. Lactoferrin and lactoferricin endocytosis halt Giardia cell growth and prevent infective cyst production. Sci Rep8:18020. doi: 10.1038/s41598-018-36563-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Krtkova J, Thomas EB, Alas GC, Schraner EM, Behjatnia HR, Hehl AB, Paredez AR. 2016. Rac regulates Giardia lamblia encystation by coordinating cyst wall protein trafficking and secretion. mBio7:e01003-16. doi: 10.1128/mBio.01003-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Perry DA, Morrison HG, Adam RD. 2011. Optical map of the genotype A1 WB C6 Giardia lamblia genome isolate. Mol Biochem Parasitol180:112–114. doi: 10.1016/j.molbiopara.2011.07.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Xu F, Jex A, Svard SG. 2020. A chromosome-scale reference genome for Giardia intestinalis WB. Sci Data7:38. doi: 10.1038/s41597-020-0377-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Adam RD, Nash TE, Wellems TE. 1988. The Giardia lamblia trophozoite contains sets of closely related chromosomes. Nucleic Acids Res16:4555–4567. doi: 10.1093/nar/16.10.4555. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Xue M, Chen B, Ye Q, Shao J, Lyu Z, Wen J. 2018. Sense-antisense gene overlap is probably a cause for retaining the few introns in Giardia genome and the implications. Biol Direct13:23. doi: 10.1186/s13062-018-0226-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Saraiya AA, Li W, Wu J, Chang CH, Wang CC. 2014. The microRNAs in an ancient protist repress the variant-specific surface protein expression by targeting the entire coding sequence. PLoS Pathog10:e1003791. doi: 10.1371/journal.ppat.1003791. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Liao JY, Guo YH, Zheng LL, Li Y, Xu WL, Zhang YC, Zhou H, Lun ZR, Ayala FJ, Qu LH. 2014. Both endo-siRNAs and tRNA-derived small RNAs are involved in the differentiation of primitive eukaryote Giardia lamblia. Proc Natl Acad Sci U S A111:14159–14164. doi: 10.1073/pnas.1414394111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Welch DM, Meselson M. 2000. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science288:1211–1215. doi: 10.1126/science.288.5469.1211. [PubMed] [CrossRef] [Google Scholar]

62. Welch DB, Meselson MS. 2001. Rates of nucleotide substitution in sexual and anciently asexual rotifers. Proc Natl Acad Sci U S A98:6720–6724. doi: 10.1073/pnas.111144598. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Wielinga C, Ryan U, Andrew Thompson RC, Monis P. 2011. Multi-locus analysis of Giardia duodenalis intra-assemblage B substitution patterns in cloned culture isolates suggests sub-assemblage B analyses will require multi-locus genotyping with conserved and variable genes. Int J Parasitol41:495–503. doi: 10.1016/j.ijpara.2010.11.007. [PubMed] [CrossRef] [Google Scholar]

64. Ankarklev J, Svard SG, Lebbad M. 2012. Allelic sequence heterozygosity in single Giardia parasites. BMC Microbiol12:65. doi: 10.1186/1471-2180-12-65. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Lecová L, Weisz F, Tůmová P, Tolarová V, Nohýnková E. 2018. The first multilocus genotype analysis of Giardia intestinalis in humans in the Czech Republic. Parasitology145:1577–1587. doi: 10.1017/S0031182018000409. [PubMed] [CrossRef] [Google Scholar]

66. Lecova L, Tumova P, Nohynkova E. 2019. Clone-based haplotyping of Giardia intestinalis assemblage B human isolates. Parasitol Res118:355–361. doi: 10.1007/s00436-018-6161-7. [PubMed] [CrossRef] [Google Scholar]

67. Cooper MA, Adam RD, Worobey M, Sterling CR. 2007. Population genetics provides evidence for recombination in Giardia. Curr Biol17:1984–1988. doi: 10.1016/j.cub.2007.10.020. [PubMed] [CrossRef] [Google Scholar]

68. Cooper MA, Sterling CR, Gilman RH, Cama V, Ortega Y, Adam RD. 2010. Molecular analysis of household transmission of Giardia lamblia in a region of high endemicity in Peru. J Infect Dis202:1713–1721. doi: 10.1086/657142. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Lasek-Nesselquist E, Welch DM, Thompson RC, Steuart RF, Sogin ML. 2009. Genetic exchange within and between assemblages of Giardia duodenalis. J Eukaryot Microbiol56:504–518. doi: 10.1111/j.1550-7408.2009.00443.x. [PubMed] [CrossRef] [Google Scholar]

70. Ansell BRE, Pope BJ, Georgeson P, Emery-Corbin SJ, Jex AR. 2019. Annotation of the Giardia proteome through structure-based hom*ology and machine learning. GigaScience8:giy150. doi: 10.1093/gigascience/giy150. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Elmendorf HG, Dawson SC, McCaffery JM. 2003. The cytoskeleton of Giardia lamblia. Int J Parasitol33:3–28. doi: 10.1016/S0020-7519(02)00228-X. [PubMed] [CrossRef] [Google Scholar]

72. Dawson SC. 2010. An insider’s guide to the microtubule cytoskeleton of Giardia. Cell Microbiol12:588–598. doi: 10.1111/j.1462-5822.2010.01458.x. [PubMed] [CrossRef] [Google Scholar]

73. Hagen KD, McInally SG, Hilton ND, Dawson SC. 2020. Microtubule organelles in Giardia, p 25–96. InOrtega-Pierres MG (ed), Advances in parasitology, vol 107. Academic Press, Cambridge, MA. [PMC free article] [PubMed] [Google Scholar]

74. Gadelha APR, Benchimol M, de Souza W. 2020. The structural organization of Giardia intestinalis cytoskeleton, p 1–23. InOrtega-Pierres MG (ed), Advances in parasitology, vol 107. Academic Press, Cambridge, MA. [PubMed] [Google Scholar]

75. Peattie DA, Alonso RA, Hein A, Caulfield JP. 1989. Ultrastructural localization of giardins to the edges of disk microribbons of Giardia lamblia and the nucleotide and deduced protein sequence of alpha giardin. J Cell Biol109:2323–2335. doi: 10.1083/jcb.109.5.2323. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Brown JR, Schwartz CL, Heumann JM, Dawson SC, Hoenger A. 2016. A detailed look at the cytoskeletal architecture of the Giardia lamblia ventral disc. J Struct Biol194:38–48. doi: 10.1016/j.jsb.2016.01.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Feely DE, Schollmeyer JV, Erlandsen SL. 1982. Giardia spp.: distribution of contractile proteins in the attachment organelle. Exp Parasitol53:145–154. doi: 10.1016/0014-4894(82)90100-x. [PubMed] [CrossRef] [Google Scholar]

78. House SA, Richter DJ, Pham JK, Dawson SC. 2011. Giardia flagellar motility is not directly required to maintain attachment to surfaces. PLoS Pathog7:e1002167. doi: 10.1371/journal.ppat.1002167. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Woessner DJ, Dawson SC. 2012. The Giardia median body protein is a ventral disc protein that is critical for maintaining a domed disc conformation during attachment. Eukaryot Cell11:292–301. doi: 10.1128/EC.05262-11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Holberton DV. 1974. Attachment of Giardia—a hydrodynamic model based on flagellar activity. J Exp Biol60:207–221. doi: 10.1242/jeb.60.1.207. [PubMed] [CrossRef] [Google Scholar]

81. Lenaghan SC, Davis CA, Henson WR, Zhang Z, Zhang M. 2011. High-speed microscopic imaging of flagella motility and swimming in Giardia lamblia trophozoites. Proc Natl Acad Sci U S A108:E550–E558. doi: 10.1073/pnas.1106904108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Lenaghan SC, Chen J, Zhang M. 2013. Modeling and analysis of propulsion in the multiflagellated micoorganism Giardia lamblia. Phys Rev E88:e012726. doi: 10.1103/PhysRevE.88.012726. [PubMed] [CrossRef] [Google Scholar]

83. Ankarklev J, Jerlstrom-Hultqvist J, Ringqvist E, Troell K, Svard SG. 2010. Behind the smile: cell biology and disease mechanisms of Giardia species. Nat Rev Microbiol8:413–422. doi: 10.1038/nrmicro2317. [PubMed] [CrossRef] [Google Scholar]

84. Hardin WR, Li R, Xu J, Shelton AM, Alas GCM, Minin VN, Paredez AR. 2017. Myosin-independent cytokinesis in Giardia utilizes flagella to coordinate force generation and direct membrane trafficking. Proc Natl Acad Sci U S A114:E5854–E5863. doi: 10.1073/pnas.1705096114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Piva B, Benchimol M. 2004. The median body of Giardia lamblia: an ultrastructural study. Biol Cell96:735–746. doi: 10.1016/j.biolcel.2004.05.006. [PubMed] [CrossRef] [Google Scholar]

86. Paredez AR, Assaf ZJ, Sept D, Timofejeva L, Dawson SC, Wang CJ, Cande WZ. 2011. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins. Proc Natl Acad Sci U S A108:6151–6156. doi: 10.1073/pnas.1018593108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Paredez AR, Nayeri A, Xu JW, Krtkova J, Cande WZ. 2014. Identification of obscure yet conserved actin-associated proteins in Giardia lamblia. Eukaryot Cell13:776–784. doi: 10.1128/EC.00041-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Krtkova J, Xu J, Lalle M, Steele-Ogus M, Alas GCM, Sept D, Paredez AR. 2017. 14-3-3 Regulates actin filament formation in the deep-branching eukaryote Giardia lamblia. mSphere2:e00248-17. doi: 10.1128/mSphere.00248-17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Sagolla MS, Dawson SC, Mancuso JJ, Cande WZ. 2006. Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis. J Cell Sci119:4889–4900. doi: 10.1242/jcs.03276. [PubMed] [CrossRef] [Google Scholar]

90. Tůmová P, Kulda J, Nohýnková E. 2007. Cell division of Giardia intestinalis: assembly and disassembly of the adhesive disc, and the cytokinesis. Cell Motil Cytoskeleton64:288–298. doi: 10.1002/cm.20183. [PubMed] [CrossRef] [Google Scholar]

91. Nohynkova E, Tumova P, Kulda J. 2006. Cell division of Giardia intestinalis: flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell. Eukaryot Cell5:753–761. doi: 10.1128/EC.5.4.753-761.2006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Adam RD, Nash TE, Wellems TE. 1991. Telomeric location of Giardia rDNA genes. Mol Cell Biol11:3326–3330. doi: 10.1128/mcb.11.6.3326-3330.1991. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Adam RD. 1992. Chromosome-size variation in Giardia lamblia: the role of rDNA repeats. Nucleic Acids Res20:3057–3061. doi: 10.1093/nar/20.12.3057. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Yu LZ, BirkyCW, Jr, Adam RD. 2002. The two nuclei of Giardia each have complete copies of the genome and are partitioned equationally at cytokinesis. Eukaryot Cell1:191–199. doi: 10.1128/EC.1.2.191-199.2002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Tůmová P, Hofstetrová K, Nohýnková E, Hovorka O, Král J. 2007. Cytogenetic evidence for diversity of two nuclei within a single diplomonad cell of Giardia. Chromosoma116:65–78. doi: 10.1007/s00412-006-0082-4. [PubMed] [CrossRef] [Google Scholar]

96. Tůmová P, Uzlíková M, Jurczyk T, Nohýnková E. 2016. Constitutive aneuploidy and genomic instability in the single-celled eukaryote Giardia intestinalis. MicrobiologyOpen5:560–574. doi: 10.1002/mbo3.351. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Smith PD, Gillin FD, Spira WM, Nash TE. 1982. Chronic giardiasis: studies on drug sensitivity, toxin production, and host immune response. Gastroenterology83:797–803. doi: 10.1016/S0016-5085(82)80008-5. [PubMed] [CrossRef] [Google Scholar]

98. Tůmová P, Dluhošová J, Weisz F, Nohýnková E. 2019. Unequal distribution of genes and chromosomes refers to nuclear diversification in the binucleated Giardia intestinalis. Int J Parasitol49:463–470. doi: 10.1016/j.ijpara.2019.01.003. [PubMed] [CrossRef] [Google Scholar]

99. Tůmová P, Uzlíková M, Wanner G, Nohýnková E. 2015. Structural organization of very small chromosomes: study on a single-celled evolutionary distant eukaryote Giardia intestinalis. Chromosoma124:81–94. doi: 10.1007/s00412-014-0486-5. [PubMed] [CrossRef] [Google Scholar]

100. Dawson SC, Sagolla MS, Cande WZ. 2007. The cenH3 histone variant defines centromeres in Giardia intestinalis. Chromosoma116:175–184. doi: 10.1007/s00412-006-0091-3. [PubMed] [CrossRef] [Google Scholar]

101. Markova K, Uzlikova M, Tumova P, Jirakova K, Hagen G, Kulda J, Nohynkova E. 2016. Absence of a conventional spindle mitotic checkpoint in the binucleated single-celled parasite Giardia intestinalis. Eur J Cell Biol95:355–367. doi: 10.1016/j.ejcb.2016.07.003. [PubMed] [CrossRef] [Google Scholar]

102. Bansal A, Kukreti S. 2020. The four repeat Giardia lamblia telomere forms tetramolecular G-quadruplex with antiparallel topology. J Biomol Struct Dyn38:1975–1983. doi: 10.1080/07391102.2019.1623074. [PubMed] [CrossRef] [Google Scholar]

103. Kabnick KS, Peattie DA. 1990. In situ analyses reveal that the two nuclei of Giardia lamblia are equivalent. J Cell Sci95:353–360. doi: 10.1242/jcs.95.3.353. [PubMed] [CrossRef] [Google Scholar]

104. Poxleitner MK, Carpenter ML, Mancuso JJ, Wang CJ, Dawson SC, Cande WZ. 2008. Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science319:1530–1533. doi: 10.1126/science.1153752. [PubMed] [CrossRef] [Google Scholar]

105. Forche A, Alby K, Schaefer D, Johnson AD, Berman J, Bennett RJ. 2008. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol6:e110. doi: 10.1371/journal.pbio.0060110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. BirkyCW, Jr.2010. Giardia sex? Yes, but how and how much?Trends Parasitol26:70–74. doi: 10.1016/j.pt.2009.11.007. [PubMed] [CrossRef] [Google Scholar]

107. Ramesh MA, Malik SB, LogsdonJM, Jr.. 2005. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol15:185–191. doi: 10.1016/S0960-9822(05)00028-X. [PubMed] [CrossRef] [Google Scholar]

108. Boisvert F-M, van Koningsbruggen S, Navascués J, Lamond AI. 2007. The multifunctional nucleolus. Nat Rev Mol Cell Biol8:574–585. doi: 10.1038/nrm2184. [PubMed] [CrossRef] [Google Scholar]

109. Narcisi EM, Glover CV, Fechheimer M. 1998. Fibrillarin, a conserved pre-ribosomal RNA processing protein of Giardia. J Eukaryot Microbiol45:105–111. doi: 10.1111/j.1550-7408.1998.tb05077.x. [PubMed] [CrossRef] [Google Scholar]

110. Tian XF, Yang ZH, Shen H, Adam RD, Lu SQ. 2010. Identification of the nucleoli of Giardia lamblia with TEM and CFM. Parasitol Res106:789–793. doi: 10.1007/s00436-009-1715-3. [PubMed] [CrossRef] [Google Scholar]

111. Jimenez-Garcia LF, Zavala G, Chavez-Munguia B, Ramos-Godinez MP, Lopez-Velazquez G, Segura-Valdez ML, Montanez C, Hehl AB, Arguello-Garcia R, Ortega-Pierres G. 2008. Identification of nucleoli in the early branching protist Giardia duodenalis. Int J Parasitol38:1297–1304. doi: 10.1016/j.ijpara.2008.04.012. [PubMed] [CrossRef] [Google Scholar]

112. Lara-Martinez R, De Lourdes Segura-Valdez M, De La Mora-De La Mora I, Lopez-Velazquez G, Jimenez-Garcia LF. 2016. Morphological studies of nucleologenesis in Giardia lamblia. Anat Rec299:549–556. doi: 10.1002/ar.23323. [PubMed] [CrossRef] [Google Scholar]

113. Torres-Huerta AL, Martinez-Miguel RM, Bazan-Tejeda ML, Bermudez-Cruz RM. 2016. Characterization of recombinase DMC1B and its functional role as Rad51 in DNA damage repair in Giardia duodenalis trophozoites. Biochimie127:173–186. doi: 10.1016/j.biochi.2016.05.014. [PubMed] [CrossRef] [Google Scholar]

114. Martinez-Miguel RM, Sandoval-Cabrera A, Bazan-Tejeda ML, Torres-Huerta AL, Martinez-Reyes DA, Bermudez-Cruz RM. 2017. Giardia duodenalis Rad52 protein: biochemical characterization and response upon DNA damage. J Biochem162:123–135. doi: 10.1093/jb/mvx009. [PubMed] [CrossRef] [Google Scholar]

115. Singer SM, Yee J, Nash TE. 1998. Episomal and integrated maintenance of foreign DNA in Giardia lamblia. Mol Biochem Parasitol92:59–69. doi: 10.1016/s0166-6851(97)00225-9. [PubMed] [CrossRef] [Google Scholar]

116. Seshadri V, McArthur AG, Sogin ML, Adam RD. 2003. Giardia lamblia RNA polymerase II: amanitin-resistant transcription. J Biol Chem278:27804–27810. doi: 10.1074/jbc.M303316200. [PubMed] [CrossRef] [Google Scholar]

117. Gomez V, Wasserman M. 2017. Interactions between Giardia duodenalis Sm proteins and their association with spliceosomal snRNAs. Parasitol Res116:617–626. doi: 10.1007/s00436-016-5326-5. [PubMed] [CrossRef] [Google Scholar]

118. Yu DC, Wang AL, Botka CW, Wang CC. 1998. Protein synthesis in Giardia lamblia may involve interaction between a downstream box (DB) in mRNA and an anti-DB in the 16S-like ribosomal RNA. Mol Biochem Parasitol96:151–165. doi: 10.1016/S0166-6851(98)00126-1. [PubMed] [CrossRef] [Google Scholar]

119. Li L, Wang CC. 2004. Capped mRNA with a single nucleotide leader is optimally translated in a primitive eukaryote, Giardia lamblia. J Biol Chem279:14656–14664. doi: 10.1074/jbc.M309879200. [PubMed] [CrossRef] [Google Scholar]

120. Hausmann S, Altura MA, Witmer M, Singer SM, Elmendorf HG, Shuman S. 2005. Yeast-like mRNA capping apparatus in Giardia lamblia. J Biol Chem280:12077–12086. doi: 10.1074/jbc.M412063200. [PubMed] [CrossRef] [Google Scholar]

121. Adedoja AN, McMahan T, Neal JP, Hamal Dhakal S, Jois S, Romo D, Hull K, Garlapati S. 2020. Translation initiation factors GleIF4E2 and GleIF4A can interact directly with the components of the pre-initiation complex to facilitate translation initiation in Giardia lamblia. Mol Biochem Parasitol236:111258. doi: 10.1016/j.molbiopara.2020.111258. [PubMed] [CrossRef] [Google Scholar]

122. Lindmark DG, Muller M. 1973. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichom*onas foetus, and its role in pyruvate metabolism. J Biol Chem248:7724–7728. doi: 10.1016/S0021-9258(19)43249-3. [PubMed] [CrossRef] [Google Scholar]

123. Johnson PJ, d’Oliveira CE, Gorrell TE, Müller M. 1990. Molecular analysis of the hydrogenosomal ferredoxin of the anaerobic protist Trichom*onas vagin*lis. Proc Natl Acad Sci U S A87:6097–6101. doi: 10.1073/pnas.87.16.6097. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Shiflett AM, Johnson PJ. 2010. Mitochondrion-related organelles in eukaryotic protists. Annu Rev Microbiol64:409–429. doi: 10.1146/annurev.micro.62.081307.162826. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Voleman L, Dolezal P. 2019. Mitochondrial dynamics in parasitic protists. PLoS Pathog15:e1008008. doi: 10.1371/journal.ppat.1008008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Regoes A, Zourmpanou D, Leon-Avila G, van der GM, Tovar J, Hehl AB. 2005. Protein import, replication, and inheritance of a vestigial mitochondrion. J Biol Chem280:30557–30563. doi: 10.1074/jbc.M500787200. [PubMed] [CrossRef] [Google Scholar]

127. Jedelsky PL, Dolezal P, Rada P, Pyrih J, Smid O, Hrdy I, Sedinova M, Marcincikova M, Voleman L, Perry AJ, Beltran NC, Lithgow T, Tachezy J. 2011. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One6:e17285. doi: 10.1371/journal.pone.0017285. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Pyrihova E, Motyckova A, Voleman L, Wandyszewska N, Fiser R, Seydlova G, Roger A, Kolisko M, Dolezal P. 2018. A single Tim translocase in the mitosomes of Giardia intestinalis illustrates convergence of protein import machines in anaerobic eukaryotes. Genome Biol Evol10:2813–2822. doi: 10.1093/gbe/evy215. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Voleman L, Najdrová V, Ástvaldsson Á, Tůmová P, Einarsson E, Švindrych Z, Hagen GM, Tachezy J, Svärd SG, Doležal P. 2017. Giardia intestinalis mitosomes undergo synchronized fission but not fusion and are constitutively associated with the endoplasmic reticulum. BMC Biol15:27. doi: 10.1186/s12915-017-0361-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Gabaldon T, Ginger ML, Michels PA. 2016. Peroxisomes in parasitic protists. Mol Biochem Parasitol209:35–45. doi: 10.1016/j.molbiopara.2016.02.005. [PubMed] [CrossRef] [Google Scholar]

131. Acosta-Virgen K, Chavez-Munguia B, Talamas-Lara D, Lagunes-Guillen A, Martinez-Higuera A, Lazcano A, Martinez-Palomo A, Espinosa-Cantellano M. 2018. Giardia lamblia: identification of peroxisomal-like proteins. Exp Parasitol191:36–43. doi: 10.1016/j.exppara.2018.06.006. [PubMed] [CrossRef] [Google Scholar]

132. Lloyd D, Williams CF. 2014. Comparative biochemistry of Giardia, Hexamita and Spironucleus: enigmatic diplomonads. Mol Biochem Parasitol197:43–49. doi: 10.1016/j.molbiopara.2014.10.002. [PubMed] [CrossRef] [Google Scholar]

133. Paget TA, Raynor MH, Shipp DW, Lloyd D. 1990. Giardia lamblia produces alanine anaerobically but not in the presence of oxygen. Mol Biochem Parasitol42:63–67. doi: 10.1016/0166-6851(90)90113-Z. [PubMed] [CrossRef] [Google Scholar]

134. Schofield PJ, Edwards MR, Matthews J, Wilson JR. 1992. The pathway of arginine catabolism in Giardia intestinalis. Mol Biochem Parasitol51:29–36. doi: 10.1016/0166-6851(92)90197-R. [PubMed] [CrossRef] [Google Scholar]

135. Novák L, Zubáčová Z, Karnkowska A, Kolisko M, Hroudová M, Stairs CW, Simpson AGB, Keeling PJ, Roger AJ, Čepička I, Hampl V. 2016. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC Evol Biol16:197. doi: 10.1186/s12862-016-0771-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Hernandez PC, Wasserman M. 2006. Do genes from the cholesterol synthesis pathway exist and express in Giardia intestinalis?Parasitol Res98:194–199. doi: 10.1007/s00436-005-0039-1. [PubMed] [CrossRef] [Google Scholar]

137. Yichoy M, Nakayasu ES, Shpak M, Aguilar C, Aley SB, Almeida IC, Das S. 2009. Lipidomic analysis reveals that phosphatidylglycerol and phosphatidylethanolamine are newly generated phospholipids in an early-divergent protozoan, Giardia lamblia. Mol Biochem Parasitol165:67–78. doi: 10.1016/j.molbiopara.2009.01.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Yichoy M, Duarte TT, De Chatterjee A, Mendez TL, Aguilera KY, Roy D, Roychowdhury S, Aley SB, Das S. 2011. Lipid metabolism in Giardia: a post-genomic perspective. Parasitology138:267–278. doi: 10.1017/S0031182010001277. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Faso C, Hehl AB. 2019. A cytonaut’s guide to protein trafficking in Giardia lamblia, p 105–127. InOrtega-Pierres MG (ed), Advances in parasitology, vol 106. Academic Press, Cambridge, MA. [PubMed] [Google Scholar]

140. Touz MC, Zamponi N. 2017. Sorting without a Golgi complex. Traffic18:637–645. doi: 10.1111/tra.12500. [PubMed] [CrossRef] [Google Scholar]

141. Lujan HD, Marotta A, Mowatt MR, Sciaky N, Lippincott-Schwartz J, Nash TE. 1995. Developmental induction of Golgi structure and function in the primitive eukaryote Giardia lamblia. J Biol Chem270:4612–4618. doi: 10.1074/jbc.270.9.4612. [PubMed] [CrossRef] [Google Scholar]

142. Zamponi N, Zamponi E, Mayol GF, Lanfredi-Rangel A, Svard SG, Touz MC. 2017. Endoplasmic reticulum is the sorting core facility in the Golgi-lacking protozoan Giardia lamblia. Traffic18:604–621. doi: 10.1111/tra.12501. [PubMed] [CrossRef] [Google Scholar]

143. Faso C, Konrad C, Schraner EM, Hehl AB. 2013. Export of cyst wall material and Golgi organelle neogenesis in Giardia lamblia depend on endoplasmic reticulum exit sites. Cell Microbiol15:537–553. doi: 10.1111/cmi.12054. [PubMed] [CrossRef] [Google Scholar]

144. Abodeely M, DuBois KN, Hehl A, Stefanic S, Sajid M, Desouza W, Attias M, Engel JC, Hsieh I, Fetter RD, McKerrow JH. 2009. A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. Eukaryot Cell8:1665–1676. doi: 10.1128/EC.00123-09. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

145. Rivero MR, Jausoro I, Bisbal M, Feliziani C, Lanfredi-Rangel A, Touz MC. 2013. Receptor-mediated endocytosis and trafficking between endosomal-lysosomal vacuoles in Giardia lamblia. Parasitol Res112:1813–1818. doi: 10.1007/s00436-012-3253-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

146. Zumthor JP, Cernikova L, Rout S, Kaech A, Faso C, Hehl AB. 2016. Static clathrin assemblies at the peripheral vacuole-plasma membrane interface of the parasitic protozoan Giardia lamblia. PLoS Pathog12:e1005756. doi: 10.1371/journal.ppat.1005756. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Nash TE, Gillin FD, Smith PD. 1983. Excretory-secretory products of Giardia lamblia. J Immunol131:2004–2010. [PubMed] [Google Scholar]

148. Pimenta PF, da Silva PP, Nash T. 1991. Variant surface antigens of Giardia lamblia are associated with the presence of a thick cell coat: thin section and label fracture immunocytochemistry survey. Infect Immun59:3989–3996. doi: 10.1128/iai.59.11.3989-3996.1991. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Manko-Prykhoda A, Allain T, Motta JP, Cotton JA, Feener T, Oyeyemi A, Bindra S, Vallance BA, Wallace JL, Beck P, Buret AG. 2020. Giardia spp. promote the production of antimicrobial peptides and attenuate disease severity induced by attaching and effacing enteropathogens via the induction of the NLRP3 inflammasome. Int J Parasitol50:263–275. doi: 10.1016/j.ijpara.2019.12.011. [PubMed] [CrossRef] [Google Scholar]

150. Moyano S, Musso J, Feliziani C, Zamponi N, Frontera LS, Ropolo AS, Lanfredi-Rangel A, Lalle M, Touz M. 2019. Exosome biogenesis in the protozoa parasite Giardia lamblia: a model of reduced interorganellar crosstalk. Cells8:1600. doi: 10.3390/cells8121600. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

151. Adam RD, Aggarwal A, Lal AA, de la Cruz V, McCutchan T, Nash TE. 1988. Antigenic variation of a cysteine-rich protein in Giardia lamblia. J Exp Med167:109–118. doi: 10.1084/jem.167.1.109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

152. Gillin FD, Hagblom P, Harwood J, Aley SB, Reiner DS, McCaffery M, So M, Guiney DG. 1990. Isolation and expression of the gene for a major surface protein of Giardia lamblia. Proc Natl Acad Sci U S A87:4463–4467. doi: 10.1073/pnas.87.12.4463. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

153. Ey PL, Khanna K, Andrews RH, Manning PA, Mayrhofer G. 1992. Distinct genetic groups of Giardia intestinalis distinguished by restriction fragment length polymorphisms. J Gen Microbiol138:2629–2637. doi: 10.1099/00221287-138-12-2629. [PubMed] [CrossRef] [Google Scholar]

154. Mowatt MR, Aggarwal A, Nash TE. 1991. Carboxy-terminal sequence conservation among variant-specific surface proteins of Giardia lamblia. Mol Biochem Parasitol49:215–227. doi: 10.1016/0166-6851(91)90065-e. [PubMed] [CrossRef] [Google Scholar]

155. Nash TE, Banks SM, Alling DW, MerrittJW, Jr, Conrad JT. 1990. Frequency of variant antigens in Giardia lamblia. Exp Parasitol71:415–421. doi: 10.1016/0014-4894(90)90067-M. [PubMed] [CrossRef] [Google Scholar]

156. Adam RD, Nigam A, Seshadri V, Martens CA, Farneth GA, Morrison HG, Nash TE, Porcella SF, Patel R. 2010. The Giardia lamblia vsp gene repertoire: characteristics, genomic organization, and evolution. BMC Genomics11:424. doi: 10.1186/1471-2164-11-424. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Li W, Saraiya AA, Wang CC. 2013. Experimental verification of the identity of variant-specific surface proteins in Giardia lamblia trophozoites. mBio4:e00321-13–e00313. doi: 10.1128/mBio.00321-13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

158. Nash TE, MerrittJW, Jr, Conrad JT. 1991. Isolate and epitope variability in susceptibility of Giardia lamblia to intestinal proteases. Infect Immun59:1334–1340. doi: 10.1128/iai.59.4.1334-1340.1991. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Nash TE, Herrington DA, Levine MM, Conrad JT, MerrittJW, Jr.. 1990. Antigenic variation of Giardia lamblia in experimental human infections. J Immunol144:4362–4369. [PubMed] [Google Scholar]

160. Aggarwal A, Nash TE. 1988. Antigenic variation of Giardia lamblia in vivo. Infect Immun56:1420–1423. doi: 10.1128/iai.56.6.1420-1423.1988. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

161. Horn D. 2014. Antigenic variation in African trypanosomes. Mol Biochem Parasitol195:123–129. doi: 10.1016/j.molbiopara.2014.05.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

162. Adam RD, Yang YM, Nash TE. 1992. The cysteine-rich protein gene family of Giardia lamblia: loss of the CRP170 gene in an antigenic variant. Mol Cell Biol12:1194–1201. doi: 10.1128/mcb.12.3.1194-1201.1992. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

163. Kulakova L, Singer SM, Conrad J, Nash TE. 2006. Epigenetic mechanisms are involved in the control of Giardia lamblia antigenic variation. Mol Microbiol61:1533–1542. doi: 10.1111/j.1365-2958.2006.05345.x. [PubMed] [CrossRef] [Google Scholar]

164. Prucca CG, Slavin I, Quiroga R, Elias EV, Rivero FD, Saura A, Carranza PG, Lujan HD. 2008. Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature456:750–754. doi: 10.1038/nature07585. [PubMed] [CrossRef] [Google Scholar]

165. Saraiya AA, Wang CC. 2008. snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog4:e1000224. doi: 10.1371/journal.ppat.1000224. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Li W, Saraiya AA, Wang CC. 2012. The profile of snoRNA-derived microRNAs that regulate expression of variant surface proteins in Giardia lamblia. Cell Microbiol14:1455–1473. doi: 10.1111/j.1462-5822.2012.01811.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

167. Rivero FD, Saura A, Prucca CG, Carranza PG, Torri A, Lujan HD. 2010. Disruption of antigenic variation is crucial for effective parasite vaccine. Nat Med16:551–557. doi: 10.1038/nm.2141. [PubMed] [CrossRef] [Google Scholar]

168. Touz MC, Feliziani C, Ropolo AS. 2018. Membrane-associated proteins in Giardia lamblia. Genes9:404. doi: 10.3390/genes9080404. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

169. Wang AL, Wang CC. 1986. Discovery of a specific double-stranded RNA virus in Giardia lamblia. Mol Biochem Parasitol21:269–276. doi: 10.1016/0166-6851(86)90132-5. [PubMed] [CrossRef] [Google Scholar]

170. Wang AL, Wang CC. 1991. Viruses of parasitic protozoa. Parasitol Today7:76–80. doi: 10.1016/0169-4758(91)90198-w. [PubMed] [CrossRef] [Google Scholar]

171. Tai JH, Ong SJ, Chang SC, Su HM. 1993. Giardiavirus enters Giardia lamblia WB trophozoite via endocytosis. Exp Parasitol76:165–174. doi: 10.1006/expr.1993.1019. [PubMed] [CrossRef] [Google Scholar]

172. Furfine ES, White TC, Wang AL, Wang CC. 1989. A single-stranded RNA copy of the Giardia lamblia virus double- stranded RNA genome is present in the infected Giardia lamblia. Nucleic Acids Res17:7453–7467. doi: 10.1093/nar/17.18.7453. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

173. Lagunas-Rangel FA, Kameyama-Kawabe LY, Bermúdez-Cruz RM. 2021. Giardiavirus: an update. Parasitol Res120:1943–1948. doi: 10.1007/s00436-021-07167-y. [PubMed] [CrossRef] [Google Scholar]

174. Gong P, Li X, Wu W, Cao L, Zhao P, Li X, Ren B, Li J, Zhang X. 2020. A novel MicroRNA from the translated region of the Giardiavirus rdrp gene governs virus copy number in Giardia duodenalis. Front Microbiol11:569412. doi: 10.3389/fmicb.2020.569412. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. Benedict KM, Collier SA, Marder EP, Hlavsa MC, Fullerton KE, Yoder JS. 2019. Case-case analyses of cryptosporidiosis and giardiasis using routine national surveillance data in the United States—2005–2015. Epidemiol Infect147:e178. doi: 10.1017/S0950268819000645. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

176. Walzer PD, Wolfe MS, Schultz MG. 1971. Giardiasis in travelers. J Infect Dis124:235–237. doi: 10.1093/infdis/124.2.235. [PubMed] [CrossRef] [Google Scholar]

177. Kettis AA, Magnius L. 1973. Giardia lamblia infection in a group of students after a visit to Leningrad in March 1970. Scand J Infect Dis5:289–292. doi: 10.3109/inf.1973.5.issue-4.10. [PubMed] [CrossRef] [Google Scholar]

178. Jokipii L, Jokipii AM. 1974. Giardiasis in travelers: a prospective study. J Infect Dis130:295–299. doi: 10.1093/infdis/130.3.295. [PubMed] [CrossRef] [Google Scholar]

179. Robertson LJ, Hermansen L, Gjerde BK, Strand E, Alvsvag JO, Langeland N. 2006. Application of genotyping during an extensive outbreak of waterborne giardiasis in Bergen, Norway, during autumn and winter 2004. Appl Environ Microbiol72:2212–2217. doi: 10.1128/AEM.72.3.2212-2217.2006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

180. Nygard K, Schimmer B, Sobstad O, Walde A, Tveit I, Langeland N, Hausken T, Aavitsland P. 2006. A large community outbreak of waterborne giardiasis-delayed detection in a non-endemic urban area. BMC Public Health6:141. doi: 10.1186/1471-2458-6-141. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Isaac-Renton JL, Lewis LF, Ong CS, Nulsen MF. 1994. A second community outbreak of waterborne giardiasis in Canada and serological investigation of patients. Trans R Soc Trop Med Hyg88:395–399. doi: 10.1016/0035-9203(94)90397-2. [PubMed] [CrossRef] [Google Scholar]

182. Istre GR, Dunlop TS, Gaspard GB, Hopkins RS. 1984. Waterborne giardiasis at a mountain resort: evidence for acquired immunity. Am J Public Health74:602–604. doi: 10.2105/ajph.74.6.602. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

183. Gilman RH, Marquis GS, Miranda E, Vestegui M, Martinez H. 1988. Rapid reinfection by Giardia lamblia after treatment in a hyperendemic third world community. Lancet331:343–345. doi: 10.1016/S0140-6736(88)91131-2. [PubMed] [CrossRef] [Google Scholar]

184. Reses HE, Gargano JW, Liang JL, Cronquist A, Smith K, Collier SA, Roy SL, Vanden Eng J, Bogard A, Lee B, Hlavsa MC, Rosenberg ES, Fullerton KE, Beach MJ, Yoder JS. 2018. Risk factors for sporadic Giardia infection in the USA: a case-control study in Colorado and Minnesota. Epidemiol Infect146:1071–1078. doi: 10.1017/S0950268818001073. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

185. de Lucio A, Bailo B, Aguilera M, Cardona GA, Fernandez-Crespo JC, Carmena D. 2017. No molecular epidemiological evidence supporting household transmission of zoonotic Giardia duodenalis and Cryptosporidium spp. from pet dogs and cats in the province of Alava, Northern Spain. Acta Trop170:48–56. doi: 10.1016/j.actatropica.2017.02.024. [PubMed] [CrossRef] [Google Scholar]

186. Coelho CH, Durigan M, Leal DAG, Schneider ADB, Franco RMB, Singer SM. 2017. Giardiasis as a neglected disease in Brazil: systematic review of 20 years of publications. PLoS Negl Trop Dis11:e0006005. doi: 10.1371/journal.pntd.0006005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

187. Ryan U, Hijjawi N, Feng Y, Xiao L. 2019. Giardia: an under-reported foodborne parasite. Int J Parasitol49:1–11. doi: 10.1016/j.ijpara.2018.07.003. [PubMed] [CrossRef] [Google Scholar]

188. Certad G, Viscogliosi E, Chabe M, Caccio SM. 2017. Pathogenic mechanisms of Cryptosporidium and Giardia. Trends Parasitol33:561–576. doi: 10.1016/j.pt.2017.02.006. [PubMed] [CrossRef] [Google Scholar]

189. Singer SM, Fink MY, Angelova VV. 2019. Recent insights into innate and adaptive immune responses to Giardia. Adv Parasitol106:171–208. doi: 10.1016/bs.apar.2019.07.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

190. Buret AG. 2019. Acceptance of the 2019 Stoll-Stunkard Memorial Lectureship Award: the study of host-parasite interactions to better understand fundamental host physiology: the model of giardiasis. J Parasitol105:955–960. [PubMed] [Google Scholar]

191. Fink MY, Singer SM. 2017. The intersection of immune responses, microbiota, and pathogenesis in giardiasis. Trends Parasitol33:901–913. doi: 10.1016/j.pt.2017.08.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

192. Erlandsen SL, Chase DG. 1974. Morphological alterations in the microvillous border of villous epithelial cells produced by intestinal microorganisms. Am J Clin Nutr27:1277–1286. doi: 10.1093/ajcn/27.11.1277. [PubMed] [CrossRef] [Google Scholar]

193. Allain T, Fekete E, Buret AG. 2019. Giardia cysteine proteases: the teeth behind the smile. Trends Parasitol35:636–648. doi: 10.1016/j.pt.2019.06.003. [PubMed] [CrossRef] [Google Scholar]

194. Oberhuber G, Mesteri I, Kopf W, Muller H. 2016. Demonstration of trophozoites of G. Lamblia in ileal mucosal biopsy specimens may reveal giardiasis in patients with significantly inflamed parasite-free duodenal mucosa. Am J Surg Pathol40:1280–1285. doi: 10.1097/PAS.0000000000000665. [PubMed] [CrossRef] [Google Scholar]

195. de Carvalho TB, David EB, Coradi ST, Guimaraes S. 2008. Protease activity in extracellular products secreted in vitro by trophozoites of Giardia duodenalis. Parasitol Res104:185–190. doi: 10.1007/s00436-008-1185-z. [PubMed] [CrossRef] [Google Scholar]

196. Allain T, Amat CB, Motta JP, Manko A, Buret AG. 2017. Interactions of Giardia sp. with the intestinal barrier: epithelium, mucus, and microbiota. Tissue Barriers5:e1274354. doi: 10.1080/21688370.2016.1274354. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Liu J, Ma'ayeh S, Peirasmaki D, Lundstrom-Stadelmann B, Hellman L, Svard SG. 2018. Secreted Giardia intestinalis cysteine proteases disrupt intestinal epithelial cell junctional complexes and degrade chemokines. Virulence9:879–894. doi: 10.1080/21505594.2018.1451284. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

198. Ortega-Pierres G, Arguello-Garcia R, Laredo-Cisneros MS, Fonseca-Linan R, Gomez-Mondragon M, Inzunza-Arroyo R, Flores-Benitez D, Raya-Sandino A, Chavez-Munguia B, Ventura-Gallegos JL, Zentella-Dehesa A, Bermudez-Cruz RM, Gonzalez-Mariscal L. 2018. Giardipain-1, a protease secreted by Giardia duodenalis trophozoites, causes junctional, barrier and apoptotic damage in epithelial cell monolayers. Int J Parasitol48:621–639. doi: 10.1016/j.ijpara.2018.01.006. [PubMed] [CrossRef] [Google Scholar]

199. Bhargava A, Cotton JA, Dixon BR, Gedamu L, Yates RM, Buret AG. 2015. Giardia duodenalis surface cysteine proteases induce cleavage of the intestinal epithelial cytoskeletal protein villin via myosin light chain kinase. PLoS One10:e0136102. doi: 10.1371/journal.pone.0136102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

200. Amat CB, Motta JP, Fekete E, Moreau F, Chadee K, Buret AG. 2017. Cysteine protease-dependent mucous disruptions and differential mucin gene expression in Giardia duodenalis infection. Am J Pathol187:2486–2498. doi: 10.1016/j.ajpath.2017.07.009. [PubMed] [CrossRef] [Google Scholar]

201. Ma’ayeh SY, Liu J, Peirasmaki D, Hornaeus K, Bergstrom Lind S, Grabherr M, Bergquist J, Svard SG. 2017. Characterization of the Giardia intestinalis secretome during interaction with human intestinal epithelial cells: the impact on host cells. PLoS Negl Trop Dis11:e0006120. doi: 10.1371/journal.pntd.0006120. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

202. Peirasmaki D, Ma’ayeh SY, Xu F, Ferella M, Campos S, Liu J, Svard SG. 2020. High cysteine membrane proteins (HCMPs) are up-regulated during Giardia-host cell interactions. Front Genet11:913. doi: 10.3389/fgene.2020.00913. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

203. Dubourg A, Xia D, Winpenny JP, Al Naimi S, Bouzid M, Sexton DW, Wastling JM, Hunter PR, Tyler KM. 2018. Giardia secretome highlights secreted tenascins as a key component of pathogenesis. GigaScience7:1–13. doi: 10.1093/gigascience/giy003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

204. Stadelmann B, Hanevik K, Andersson MK, Bruserud O, Svard SG. 2013. The role of arginine and arginine-metabolizing enzymes during Giardia-host cell interactions in vitro. BMC Microbiol13:256. doi: 10.1186/1471-2180-13-256. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

205. Stadelmann B, Merino MC, Persson L, Svard SG. 2012. Arginine consumption by the intestinal parasite Giardia intestinalis reduces proliferation of intestinal epithelial cells. PLoS One7:e45325. doi: 10.1371/journal.pone.0045325. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

206. Ringqvist E, Palm JE, Skarin H, Hehl AB, Weiland M, Davids BJ, Reiner DS, Griffiths WJ, Eckmann L, Gillin FD, Svard SG. 2008. Release of metabolic enzymes by Giardia in response to interaction with intestinal epithelial cells. Mol Biochem Parasitol159:85–91. doi: 10.1016/j.molbiopara.2008.02.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

207. Banik S, Renner Viveros P, Seeber F, Klotz C, Ignatius R, Aebischer T. 2013. Giardia duodenalis arginine deiminase modulates the phenotype and cytokine secretion of human dendritic cells by depletion of arginine and formation of ammonia. Infect Immun81:2309–2317. doi: 10.1128/IAI.00004-13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

208. Hjollo T, Bratland E, Steinsland H, Radunovic M, Langeland N, Hanevik K. 2018. Longitudinal cohort study of serum antibody responses towards Giardia lamblia variant-specific surface proteins in a non-endemic area. Exp Parasitol191:66–72. doi: 10.1016/j.exppara.2018.06.005. [PubMed] [CrossRef] [Google Scholar]

209. Serradell MC, Saura A, Rupil LL, Gargantini PR, Faya MI, Furlan PJ, Lujan HD. 2016. Vaccination of domestic animals with a novel oral vaccine prevents Giardia infections, alleviates signs of giardiasis and reduces transmission to humans. NPJ Vaccines1:16018. doi: 10.1038/npjvaccines.2016.18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

210. Chang JT. 2020. Pathophysiology of inflammatory bowel diseases. N Engl J Med383:2652–2664. doi: 10.1056/NEJMra2002697. [PubMed] [CrossRef] [Google Scholar]

211. Plichta DR, Graham DB, Subramanian S, Xavier RJ. 2019. Therapeutic opportunities in inflammatory bowel disease: mechanistic dissection of host-microbiome relationships. Cell178:1041–1056. doi: 10.1016/j.cell.2019.07.045. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

212. Solaymani-Mohammadi S, Singer SM. 2011. Host immunity and pathogen strain contribute to intestinal disaccharidase impairment following gut infection. J Immunol187:3769–3775. doi: 10.4049/jimmunol.1100606. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

213. Dreesen L, De Bosscher K, Grit G, Staels B, Lubberts E, Bauge E, Geldhof P. 2014. Giardia muris infection in mice is associated with a protective interleukin 17A response and induction of peroxisome proliferator-activated receptor alpha. Infect Immun82:3333–3340. doi: 10.1128/IAI.01536-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

214. Dann SM, Manthey CF, Le C, Miyamoto Y, Gima L, Abrahim A, Cao AT, Hanson EM, Kolls JK, Raz E, Cong Y, Eckmann L. 2015. IL-17A promotes protective IgA responses and expression of other potential effectors against the lumen-dwelling enteric parasite Giardia. Exp Parasitol156:68–78. doi: 10.1016/j.exppara.2015.06.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

215. Paerewijck O, Maertens B, Dreesen L, Van Meulder F, Peelaers I, Ratman D, Li RW, Lubberts E, De Bosscher K, Geldhof P. 2017. Interleukin-17 receptor A (IL-17RA) as a central regulator of the protective immune response against Giardia. Sci Rep7:8520. doi: 10.1038/s41598-017-08590-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

216. Saghaug CS, Sørnes S, Peirasmaki D, Svärd S, Langeland N, Hanevik K. 2016. Human memory CD4+ T cell immune responses against Giardia lamblia. Clin Vaccine Immunol23:11–18. doi: 10.1128/CVI.00419-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

217. Cascais-Figueiredo T, Austriaco-Teixeira P, Fantinatti M, Silva-Freitas ML, Santos-Oliveira JR, Coelho CH, Singer SM, Da-Cruz AM. 2019. Giardiasis alters intestinal fatty acid binding protein (I-FABP) and plasma cytokines levels in children in brazil. Pathogens9:7. doi: 10.3390/pathogens9010007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

218. Yordanova IA, Cortes A, Klotz C, Kuhl AA, Heimesaat MM, Cantacessi C, Hartmann S, Rausch S. 2019. ROR-γt+ Treg to Th17 ratios correlate with susceptibility to Giardia infection. Sci Rep9:20328. doi: 10.1038/s41598-019-56416-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

219. Solaymani-Mohammadi S, Singer SM. 2010. Giardia duodenalis: the double-edged sword of immune responses in giardiasis. Exp Parasitol126:292–297. doi: 10.1016/j.exppara.2010.06.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

220. Munoz-Cruz S, Gomez-Garcia A, Matadamas-Martinez F, Alvarado-Torres JA, Meza-Cervantez P, Arriaga-Pizano L, Yepez-Mulia L. 2018. Giardia lamblia: identification of molecules that contribute to direct mast cell activation. Parasitol Res117:2555–2567. doi: 10.1007/s00436-018-5944-1. [PubMed] [CrossRef] [Google Scholar]

221. Maloney J, Keselman A, Li E, Singer SM. 2015. Macrophages expressing arginase 1 and nitric oxide synthase 2 accumulate in the small intestine during Giardia lamblia infection. Microbes Infect17:462–467. doi: 10.1016/j.micinf.2015.03.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

222. Fink MY, Maloney J, Keselman A, Li E, Menegas S, Staniorski C, Singer SM. 2019. Proliferation of resident macrophages is dispensable for protection during Giardia duodenalis infections. ImmunoHorizons3:412–421. doi: 10.4049/immunohorizons.1900041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

223. Kamda JD, Singer SM. 2009. Phosphoinositide 3-kinase-dependent inhibition of dendritic cell interleukin-12 production by Giardia lamblia. Infect Immun77:685–693. doi: 10.1128/IAI.00718-08. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

224. Summan A, Nejsum P, Williams AR. 2018. Modulation of human dendritic cell activity by Giardia and helminth antigens. Parasite Immunol40:e12525. doi: 10.1111/pim.12525. [PubMed] [CrossRef] [Google Scholar]

225. Dann SM, Le CHY, Hanson EM, Ross MC, Eckmann L. 2018. Giardia infection of the small intestine induces chronic colitis in genetically susceptible hosts. J Immunol201:548–559. doi: 10.4049/jimmunol.1700824. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

226. Manko A, Motta JP, Cotton JA, Feener T, Oyeyemi A, Vallance BA, Wallace JL, Buret AG. 2017. Giardia co-infection promotes the secretion of antimicrobial peptides beta-defensin 2 and trefoil factor 3 and attenuates attaching and effacing bacteria-induced intestinal disease. PLoS One12:e0178647. doi: 10.1371/journal.pone.0178647. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

227. Cotton JA, Motta JP, Schenck LP, Hirota SA, Beck PL, Buret AG. 2014. Giardia duodenalis infection reduces granulocyte infiltration in an in vivo model of bacterial toxin-induced colitis and attenuates inflammation in human intestinal tissue. PLoS One9:e109087. doi: 10.1371/journal.pone.0109087. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

228. Cotton JA, Bhargava A, Ferraz JG, Yates RM, Beck PL, Buret AG. 2014. Giardia duodenalis cathepsin B proteases degrade intestinal epithelial interleukin-8 and attenuate interleukin-8-induced neutrophil chemotaxis. Infect Immun82:2772–2787. doi: 10.1128/IAI.01771-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

229. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JFWM, Tijssen JGP, Speelman P, Dijkgraaf MGW, Keller JJ. 2013. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med368:407–415. doi: 10.1056/NEJMoa1205037. [PubMed] [CrossRef] [Google Scholar]

230. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, Rich SS, Concannon P, Mychaleckyj JC, Liu J, Houpt E, Li JV, Holmes E, Nicholson J, Knights D, Ursell LK, Knight R, Gordon JI. 2013. Gut microbiomes of Malawian twin pairs discordant for Kwashiorkor. Science339:548–554. doi: 10.1126/science.1229000. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

231. Fan Y, Pedersen O. 2021. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol19:55–71. doi: 10.1038/s41579-020-0433-9. [PubMed] [CrossRef] [Google Scholar]

232. Torres MR, Silva ME, Vieira EC, Bambirra EA, Sogayar MI, Pena FJ, Nicoli JR. 1992. Intragastric infection of conventional and germfree mice with Giardia lamblia. Braz J Med Biol Res25:349–352. [PubMed] [Google Scholar]

233. Torres MF, Uetanabaro AP, Costa AF, Alves CA, Farias LM, Bambirra EA, Penna FJ, Vieira EC, Nicoli JR. 2000. Influence of bacteria from the duodenal microbiota of patients with symptomatic giardiasis on the pathogenicity of Giardia duodenalis in gnotoxenic mice. J Med Microbiol49:209–215. doi: 10.1099/0022-1317-49-3-209. [PubMed] [CrossRef] [Google Scholar]

234. Singer SM, Nash TE. 2000. The role of normal flora in Giardia lamblia infections in mice. J Infect Dis181:1510–1512. doi: 10.1086/315409. [PubMed] [CrossRef] [Google Scholar]

235. Barash NR, Maloney JG, Singer SM, Dawson SC. 2017. Giardia alters commensal microbial diversity throughout the murine gut. Infect Immun85:e00948-16. doi: 10.1128/IAI.00948-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

236. Keselman A, Li E, Maloney J, Singer SM. 2016. The microbiota contributes to CD8+ T cell activation and nutrient malabsorption following intestinal infection with Giardia duodenalis. Infect Immun84:2853–2860. doi: 10.1128/IAI.00348-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

237. Beatty JK, Akierman SV, Motta JP, Muise S, Workentine ML, Harrison JJ, Bhargava A, Beck PL, Rioux KP, McKnight GW, Wallace JL, Buret AG. 2017. Giardia duodenalis induces pathogenic dysbiosis of human intestinal microbiota biofilms. Int J Parasitol47:311–326. doi: 10.1016/j.ijpara.2016.11.010. [PubMed] [CrossRef] [Google Scholar]

238. Chen TL, Chen S, Wu HW, Lee TC, Lu YZ, Wu LL, Ni YH, Sun CH, Yu WH, Buret AG, Yu LC. 2013. Persistent gut barrier damage and commensal bacterial influx following eradication of Giardia infection in mice. Gut Pathog5:26. doi: 10.1186/1757-4749-5-26. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

239. Li X, Zhang X, Gong P, Xia F, Li L, Yang Z, Li J. 2017. TLR2−/− mice display decreased severity of giardiasis via enhanced proinflammatory cytokines production dependent on AKT signal pathway. Front Immunol8:1186. doi: 10.3389/fimmu.2017.01186. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

240. Iebba V, Santangelo F, Totino V, Pantanella F, Monsia A, Di Cristanziano V, Di Cave D, Schippa S, Berrilli F, D’Alfonso R. 2016. Gut microbiota related to Giardia duodenalis, Entamoeba spp. and Blastocystis hominis infections in humans from Cote d’Ivoire. J Infect Dev Ctries10:1035–1041. doi: 10.3855/jidc.8179. [PubMed] [CrossRef] [Google Scholar]

241. Toro-Londono MA, Bedoya-Urrego K, Garcia-Montoya GM, Galvan-Diaz AL, Alzate JF. 2019. Intestinal parasitic infection alters bacterial gut microbiota in children. PeerJ7:e6200. doi: 10.7717/peerj.6200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

242. Mejia R, Damania A, Jeun R, Bryan PE, Vargas P, Juarez M, Cajal PS, Nasser J, Krolewiecki A, Lefoulon E, Long C, Drake E, Cimino RO, Slatko B. 2020. Impact of intestinal parasites on microbiota and cobalamin gene sequences: a pilot study. Parasit Vectors13:200. doi: 10.1186/s13071-020-04073-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

243. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acacio S, Biswas K, O'Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM. 2013. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet382:209–222. doi: 10.1016/S0140-6736(13)60844-2. [PubMed] [CrossRef] [Google Scholar]

244. Yori PP, Lee G, Olortegui MP, Chavez CB, Flores JT, Vasquez AO, Burga R, Pinedo SR, Asayag CR, Black RE, Caulfield LE, Kosek M. 2014. Santa Clara de Nanay: the MAL-ED cohort in Peru. Clin Infect Dis59(Suppl 4):S310–S316. doi: 10.1093/cid/ciu460. [PubMed] [CrossRef] [Google Scholar]

245. Berry ASF, Johnson K, Martins R, Sullivan MC, Farias Amorim C, Putre A, Scott A, Wang S, Lindsay B, Baldassano RN, Nolan TJ, Beiting DP. 2020. Natural infection with Giardia is associated with altered community structure of the human and canine gut microbiome. mSphere5:e00670-20. doi: 10.1128/mSphere.00670-20. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

246. Halliez MC, Motta JP, Feener TD, Guerin G, LeGoff L, Francois A, Colasse E, Favennec L, Gargala G, Lapointe TK, Altier C, Buret AG. 2016. Giardia duodenalis induces paracellular bacterial translocation and causes postinfectious visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol310:G574–85. doi: 10.1152/ajpgi.00144.2015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

247. Bartelt LA, Roche J, Kolling G, Bolick D, Noronha F, Naylor C, Hoffman P, Warren C, Singer S, Guerrant R. 2013. Persistent G. lamblia impairs growth in a murine malnutrition model. J Clin Invest123:2672–2684. doi: 10.1172/JCI67294. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

248. Bartelt LA, Bolick DT, Mayneris-Perxachs J, Kolling GL, Medlock GL, Zaenker EI, Donowitz J, Thomas-Beckett RV, Rogala A, Carroll IM, Singer SM, Papin J, Swann JR, Guerrant RL. 2017. Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection with Giardia lamblia and enteroaggregative Escherichia coli. PLoS Pathog13:e1006471. doi: 10.1371/journal.ppat.1006471. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

249. Hollm-Delgado MG, Gilman RH, Bern C, Cabrera L, Sterling CR, Black RE, Checkley W. 2008. Lack of an adverse effect of Giardia intestinalis infection on the health of Peruvian children. Am J Epidemiol168:647–655. doi: 10.1093/aje/kwn177. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

250. Muhsen K, Levine MM. 2012. A systematic review and meta-analysis of the association between Giardia lamblia and endemic pediatric diarrhea in developing countries. Clin Infect Dis55:S271–S293. doi: 10.1093/cid/cis762. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

251. Muhsen K, Cohen D, Levine MM. 2014. Can Giardia lamblia infection lower the risk of acute diarrhea among preschool children?J Trop Pediatr60:99–103. doi: 10.1093/tropej/fmt085. [PubMed] [CrossRef] [Google Scholar]

252. Donowitz JR, Alam M, Kabir M, Ma JZ, Nazib F, Platts-Mills JA, Bartelt LA, Haque R, PetriWA, Jr.. 2016. A prospective longitudinal cohort to investigate the effects of early life giardiasis on growth and all cause diarrhea. Clin Infect Dis63:792–797. doi: 10.1093/cid/ciw391. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

253. Prado MS, Cairncross S, Strina A, Barreto ML, Oliveira-Assis AM, Rego S. 2005. Asymptomatic giardiasis and growth in young children; a longitudinal study in Salvador, Brazil. Parasitology131:51–56. doi: 10.1017/s0031182005007353. [PubMed] [CrossRef] [Google Scholar]

254. Boeke CE, Mora-Plazas M, Forero Y, Villamor E. 2010. Intestinal protozoan infections in relation to nutritional status and gastrointestinal morbidity in Colombian school children. J Trop Pediatr56:299–306. doi: 10.1093/tropej/fmp136. [PubMed] [CrossRef] [Google Scholar]

255. Sackey ME, Weigel MM, Armijos RX. 2003. Predictors and nutritional consequences of intestinal parasitic infections in rural Ecuadorian children. J Trop Pediatr49:17–23. doi: 10.1093/tropej/49.1.17. [PubMed] [CrossRef] [Google Scholar]

256. Centeno-Lima S, Rosado-Marques V, Ferreira F, Rodrigues R, Indeque B, Camara I, De Sousa B, Aguiar P, Nunes B, Ferrinho P. 2013. Giardia duodenalis and chronic malnutrition in children under five from a rural area of Guinea-Bissau. Acta Medica Portuguesa26:721–724. [PubMed] [Google Scholar]

257. Rogawski ET, Bartelt LA, Platts-Mills JA, Seidman JC, Samie A, Havt A, Babji S, Trigoso DR, Qureshi S, Shakoor S, Haque R, Mduma E, Bajracharya S, Gaffar SMA, Lima AAM, Kang G, Kosek MN, Ahmed T, Svensen E, Mason C, Bhutta ZA, Lang DR, Gottlieb M, Guerrant RL, Houpt ER, Bessong PO, Investigators M-EN, the MAL-ED Network Investigators.2017. Determinants and impact of Giardia infection in the first 2 years of life in the MAL-ED birth cohort. J Pediatric Infect Dis Soc6:153–160. doi: 10.1093/jpids/piw082. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

258. Kosek MN, Investigators M-EN, MAL-ED Network Investigators.2017. Causal pathways from enteropathogens to environmental enteropathy: findings from the MAL-ED birth cohort study. EBioMedicine18:109–117. doi: 10.1016/j.ebiom.2017.02.024. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

259. Rogawski ET, Liu J, Platts-Mills JA, Kabir F, Lertsethtakarn P, Siguas M, Khan SS, Praharaj I, Murei A, Nshama R, Mujaga B, Havt A, Maciel IA, Operario DJ, Taniuchi M, Gratz J, Stroup SE, Roberts JH, Kalam A, Aziz F, Qureshi S, Islam MO, Sakpaisal P, Silapong S, Yori PP, Rajendiran R, Benny B, McGrath M, Seidman JC, Lang D, Gottlieb M, Guerrant RL, Lima AAM, Leite JP, Samie A, Bessong PO, Page N, Bodhidatta L, Mason C, Shrestha S, Kiwelu I, Mduma ER, Iqbal NT, Bhutta ZA, Ahmed T, Haque R, Kang G, Kosek MN, Houpt ER, MAL-ED Network Investigators.2018. Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study. Lancet Glob Health6:e1319–e1328. doi: 10.1016/S2214-109X(18)30351-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

260. Platts-Mills JA, Taniuchi M, Uddin MJ, Sobuz SU, Mahfuz M, Gaffar SA, Mondal D, Hossain MI, Islam MM, Ahmed AS, Petri WA, Haque R, Houpt ER, Ahmed T. 2017. Association between enteropathogens and malnutrition in children aged 6–23 mo in Bangladesh: a case-control study. Am J Clin Nutr105:1132–1138. doi: 10.3945/ajcn.116.138800. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

261. Futagami S, Itoh T, Sakamoto C. 2015. Systematic review with meta-analysis: post-infectious functional dyspepsia. Aliment Pharmacol Ther41:177–188. doi: 10.1111/apt.13006. [PubMed] [CrossRef] [Google Scholar]

262. Wensaas KA, Langeland N, Hanevik K, Morch K, Eide GE, Rortveit G. 2012. Irritable bowel syndrome and chronic fatigue 3 years after acute giardiasis: historic cohort study. Gut61:214–219. doi: 10.1136/gutjnl-2011-300220. [PubMed] [CrossRef] [Google Scholar]

263. Nakao JH, Collier SA, Gargano JW. 2017. Giardiasis and subsequent irritable bowel syndrome: a longitudinal cohort study using health insurance data. J Infect Dis215:798–805. doi: 10.1093/infdis/jiw621. [PubMed] [CrossRef] [Google Scholar]

264. Dormond M, Gutierrez RL, Porter CK. 2016. Giardia lamblia infection increases risk of chronic gastrointestinal disorders. Trop Dis Travel Med Vaccines2:17. doi: 10.1186/s40794-016-0030-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

265. Svendsen AT, Bytzer P, Engsbro AL. 2019. Systematic review with meta-analyses: does the pathogen matter in post-infectious irritable bowel syndrome?Scand J Gastroenterol54:546–562. doi: 10.1080/00365521.2019.1607897. [PubMed] [CrossRef] [Google Scholar]

266. Painter JE, Collier SA, Gargano JW. 2017. Association between Giardia and arthritis or joint pain in a large health insurance cohort: could it be reactive arthritis?Epidemiol Infect145:471–477. doi: 10.1017/S0950268816002120. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

267. Giacometti A, Cirioni O, Antonicelli L, D’Amato G, Silvestri C, Del Prete MS, Scalise G. 2003. Prevalence of intestinal parasites among individuals with allergic skin diseases. J Parasitol89:490–492. doi: 10.1645/0022-3395(2003)089[0490:POIPAI]2.0.CO;2. [PubMed] [CrossRef] [Google Scholar]

268. Paulos S, Saugar JM, de Lucio A, Fuentes I, Mateo M, Carmena D. 2019. Comparative performance evaluation of four commercial multiplex real-time PCR assays for the detection of the diarrhoea-causing protozoa Cryptosporidium hominis/parvum, Giardia duodenalis and Entamoeba histolytica. PLoS One14:e0215068. doi: 10.1371/journal.pone.0215068. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

269. Hitchco*ck MM, Hogan CA, Budvytiene I, Banaei N. 2019. Reproducibility of positive results for rare pathogens on the FilmArray GI panel. Diagn Microbiol Infect Dis95:10–14. doi: 10.1016/j.diagmicrobio.2019.03.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

270. Garcia LS, Arrowood M, Kokoskin E, Paltridge GP, Pillai DR, Procop GW, Ryan N, Shimizu RY, Visvesvara G. 2018. Laboratory diagnosis of parasites from the gastrointestinal tract. Clin Microbiol Rev31:e00025-17. doi: 10.1128/CMR.00025-17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

271. Cartwright CP. 1999. Utility of multiple-stool-specimen ova and parasite examinations in a high-prevalence setting. J Clin Microbiol37:2408–2411. doi: 10.1128/JCM.37.8.2408-2411.1999. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

272. Jangra M, Dutta U, Shah J, Thapa BR, Nada R, Gupta N, Sehgal R, Sharma V, Khurana S. 2020. Role of polymerase chain reaction in stool and duodenal biopsy for diagnosis of giardiasis in patients with persistent/chronic diarrhea. Dig Dis Sci65:2345–2353. doi: 10.1007/s10620-019-06042-2. [PubMed] [CrossRef] [Google Scholar]

273. Beal CB, Viens P, Grant RGL, Hughes JM. 1970. A new technique for sampling duodenal contents-demonstration of upper small-bowel pathogens. Am J Trop Med Hyg19:349–352. doi: 10.4269/ajtmh.1970.19.349. [PubMed] [CrossRef] [Google Scholar]

274. Rosenthal P, Liebman WM. 1980. Comparative study of stool examinations, duodenal aspiration, and pediatric Entero-Test for giardiasis in children. J Pediatr96:278–279. doi: 10.1016/S0022-3476(80)80826-2. [PubMed] [CrossRef] [Google Scholar]

275. Leitsch D. 2019. A review on metronidazole: an old warhorse in antimicrobial chemotherapy. Parasitology146:1167–1178. doi: 10.1017/S0031182017002025. [PubMed] [CrossRef] [Google Scholar]

276. Lindmark DG, Muller M. 1976. Antitrichom*onad action, mutagenicity, and reduction of metronidazole and other nitroimidazoles. Antimicrob Agents Chemother10:476–482. doi: 10.1128/AAC.10.3.476. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

277. Leitsch D, Burgess AG, Dunn LA, Krauer KG, Tan K, duch*ene M, Upcroft P, Eckmann L, Upcroft JA. 2011. Pyruvate:ferredoxin oxidoreductase and thioredoxin reductase are involved in 5-nitroimidazole activation while flavin metabolism is linked to 5-nitroimidazole resistance in Giardia lamblia. J Antimicrob Chemother66:1756–1765. doi: 10.1093/jac/dkr192. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

278. Leitsch D, Drinic M, Kolarich D, duch*ene M. 2012. Down-regulation of flavin reductase and alcohol dehydrogenase-1 (ADH1) in metronidazole-resistant isolates of Trichom*onas vagin*lis. Mol Biochem Parasitol183:177–183. doi: 10.1016/j.molbiopara.2012.03.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

279. Leitsch D, Schlosser S, Burgess A, duch*ene M. 2012. Nitroimidazole drugs vary in their mode of action in the human parasite Giardia lamblia. Int J Parasitol Drugs Drug Resist2:166–170. doi: 10.1016/j.ijpddr.2012.04.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

280. Beard CM, Noller KL, O’Fallon WM, Kurland LT, Dahlin DC. 1988. Cancer after exposure to metronidazole. Mayo Clin Proc63:147–153. doi: 10.1016/S0025-6196(12)64947-7. [PubMed] [CrossRef] [Google Scholar]

281. Dobias L, Cerna M, Rossner P, Sram R. 1994. Genotoxicity and carcinogenicity of metronidazole. Mutation Res317:177–194. doi: 10.1016/0165-1110(94)90001-9. [PubMed] [CrossRef] [Google Scholar]

282. Friedman GD, Jiang SF, Udaltsova N, QuesenberryCP, Jr, Chan J, Habel LA. 2009. Epidemiologic evaluation of pharmaceuticals with limited evidence of carcinogenicity. Int J Cancer125:2173–2178. doi: 10.1002/ijc.24545. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

283. Falagas ME, Walker AM, Jick H, Ruthazer R, Griffith J, Snydman DR. 1998. Late incidence of cancer after metronidazole use: a matched metronidazole user/nonuser study. Clin Infect Dis26:384–388. doi: 10.1086/516306. [PubMed] [CrossRef] [Google Scholar]

284. Koss CA, Baras DC, Lane SD, Aubry R, Marcus M, Markowitz LE, Koumans EH. 2012. Investigation of metronidazole use during pregnancy and adverse birth outcomes. Antimicrob Agents Chemother56:4800–4805. doi: 10.1128/AAC.06477-11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

285. Vakkilainen S, Nieminen T, Bjorkbacka S, Saavalainen-Hakala T, Salo E. 2020. Treatment of giardiasis in children: randomized trial of rectal metronidazole versus oral tinidazole. J Infect81:816–846. doi: 10.1016/j.jinf.2020.08.050. [PubMed] [CrossRef] [Google Scholar]

286. Ordonez-Mena JM, McCarthy ND, Fanshawe TR. 2018. Comparative efficacy of drugs for treating giardiasis: a systematic update of the literature and network meta-analysis of randomized clinical trials. J Antimicrob Chemother73:596–606. doi: 10.1093/jac/dkx430. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

287. Pasupuleti V, Escobedo AA, Deshpande A, Thota P, Roman Y, Hernandez AV. 2014. Efficacy of 5-nitroimidazoles for the treatment of giardiasis: a systematic review of randomized controlled trials. PLoS Negl Trop Dis8:e2733. doi: 10.1371/journal.pntd.0002733. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

288. Fung HB, Doan TL. 2005. Tinidazole: a nitroimidazole antiprotozoal agent. Clin Ther27:1859–1884. doi: 10.1016/j.clinthera.2005.12.012. [PubMed] [CrossRef] [Google Scholar]

289. MacDonald LM, Armson A, Thompson AR, Reynoldson JA. 2004. Characterisation of benzimidazole binding with recombinant tubulin from Giardia duodenalis, Encephalitozoon intestinalis, and Cryptosporidium parvum. Mol Biochem Parasitol138:89–96. doi: 10.1016/j.molbiopara.2004.08.001. [PubMed] [CrossRef] [Google Scholar]

290. Dayan AD. 2003. Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmaco*kinetics. Acta Trop86:141–159. doi: 10.1016/s0001-706x(03)00031-7. [PubMed] [CrossRef] [Google Scholar]

291. Escobedo AA, Almirall P, Gonzalez-Fraile E, Ballesteros J. 2019. Efficacy of 5-nitroimidazole compounds for giardiasis in Cuban children: systematic review and meta-analysis. Infezioni in Medicina27:58–67. [PubMed] [Google Scholar]

292. Raether W, Hanel H. 2003. Nitroheterocyclic drugs with broad spectrum activity. Parasitol Res90:S19–S39. doi: 10.1007/s00436-002-0754-9. [PubMed] [CrossRef] [Google Scholar]

293. Hoffman PS, Sisson G, Croxen MA, Welch K, Harman WD, Cremades N, Morash MG. 2007. Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni. Antimicrob Agents Chemother51:868–876. doi: 10.1128/AAC.01159-06. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

294. Anderson VR, Curran MP. 2007. Nitazoxanide: a review of its use in the treatment of gastrointestinal infections. Drugs67:1947–1967. doi: 10.2165/00003495-200767130-00015. [PubMed] [CrossRef] [Google Scholar]

295. Gardner TB, Hill DR. 2001. Treatment of giardiasis. Clin Microbiol Rev14:114–128. doi: 10.1128/CMR.14.1.114-128.2001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

296. Escobedo AA, Nunez FA, Moreira I, Vega E, Pareja A, Almirall P. 2003. Comparison of chloroquine, albendazole and tinidazole in the treatment of children with giardiasis. Ann Trop Med Parasitoly97:367–371. doi: 10.1179/000349803235002290. [PubMed] [CrossRef] [Google Scholar]

297. Canete R, Rivas DE, Escobedo AA, Gonzalez ME, Almirall P, Brito K. 2010. A randomized, controlled, open-label trial evaluating the efficacy and safety of chloroquine in the treatment of giardiasis in children. West Indian Med J59:607–611. [PubMed] [Google Scholar]

298. Morch K, Hanevik K. 2020. Giardiasis treatment: an update with a focus on refractory disease. Curr Opin Infect Dis33:355–364. doi: 10.1097/QCO.0000000000000668. [PubMed] [CrossRef] [Google Scholar]

299. Escobedo AA, Ballesteros J, Gonzalez-Fraile E, Almirall P. 2016. A meta-analysis of the efficacy of albendazole compared with tinidazole as treatments for Giardia infections in children. Acta Tropica153:120–127. doi: 10.1016/j.actatropica.2015.09.023. [PubMed] [CrossRef] [Google Scholar]

300. Solaymani-Mohammadi S, Genkinger JM, Loffredo CA, Singer SM. 2010. A meta-analysis of the effectiveness of albendazole compared with metronidazole as treatments for infections with Giardia duodenalis. PLoS Negl Trop Dis4:e682. doi: 10.1371/journal.pntd.0000682. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

301. Lalle M, Hanevik K. 2018. Treatment-refractory giardiasis: challenges and solutions. Infect Drug Resist11:1921–1933. doi: 10.2147/IDR.S141468. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

302. Emery SJ, Baker L, Ansell BRE, Mirzaei M, Haynes PA, McConville MJ, Svard SG, Jex AR. 2018. Differential protein expression and post-translational modifications in metronidazole-resistant Giardia duodenalis. GigaScience7:giy024. doi: 10.1093/gigascience/giy024. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

303. Nabarro LE, Lever RA, Armstrong M, Chiodini PL. 2015. Increased incidence of nitroimidazole-refractory giardiasis at the Hospital for Tropical Diseases, London: 2008–2013. Clin Microbiol Infect21:791–796. doi: 10.1016/j.cmi.2015.04.019. [PubMed] [CrossRef] [Google Scholar]

304. Nash TE, Ohl CA, Thomas E, Subramanian G, Keiser P, Moore TA. 2001. Treatment of patients with refractory giardiasis. Clin Infect Dis33:22–28. doi: 10.1086/320886. [PubMed] [CrossRef] [Google Scholar]

305. Escobedo AA, Almirall P, Chirino E, Pacheco F, Duque A, Avila I. 2018. Treatment of refractory paediatric giardiasis using secnidazole plus albendazole: a case series. Infezioni in Medicina26:379–384. [PubMed] [Google Scholar]

306. Requena-Mendez A, Goni P, Rubio E, Pou D, Fumado V, Lobez S, Aldasoro E, Cabezos J, Valls ME, Trevino B, Martinez Montseny AF, Clavel A, Gascon J, Munoz J. 2017. The use of quinacrine in nitroimidazole-resistant Giardia duodenalis: an old drug for an emerging problem. J Infect Dis215:946–953. doi: 10.1093/infdis/jix066. [PubMed] [CrossRef] [Google Scholar]

307. Hanevik K, Morch K, Eide GE, Langeland N, Hausken T. 2008. Effects of albendazole/metronidazole or tetracycline/folate treatments on persisting symptoms after Giardia infection: a randomized open clinical trial. Scand J Infect Dis40:517–522. doi: 10.1080/00365540701827481. [PubMed] [CrossRef] [Google Scholar]

308. Jex AR, Svärd S, Hagen KD, Starcevich H, Emery-Corbin SJ, Balan B, Nosala C, Dawson SC. 2020. Recent advances in functional research in Giardia intestinalis, p 97–137. In Ortega-Pierres MG (ed), Advances in parasitology, vol 107. Academic Press, Cambridge, MA. [PMC free article] [PubMed] [Google Scholar]

309. Keister DB. 1983. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg77:487–488. doi: 10.1016/0035-9203(83)90120-7. [PubMed] [CrossRef] [Google Scholar]

310. Bingham AK, JarrollEL, Jr, Meyer EA, Radulescu S. 1979. Giardia sp.: physical factors of excystation in vitro, and excystation vs eosin exclusion as determinants of viability. Exp Parasitol47:284–291. doi: 10.1016/0014-4894(79)90080-8. [PubMed] [CrossRef] [Google Scholar]

311. Emery-Corbin SJ, Vuong D, Lacey E, Svard SG, Ansell BRE, Jex AR. 2018. Proteomic diversity in a prevalent human-infective Giardia duodenalis sub-species. Int J Parasitol48:817–823. doi: 10.1016/j.ijpara.2018.05.003. [PubMed] [CrossRef] [Google Scholar]

312. Emery SJ, Lacey E, Haynes PA. 2016. Quantitative proteomics in Giardia duodenalis—achievements and challenges. Mol Biochem Parasitol208:96–112. doi: 10.1016/j.molbiopara.2016.07.002. [PubMed] [CrossRef] [Google Scholar]

313. Yee J, Nash TE. 1995. Transient transfection and expression of firefly luciferase in Giardia lamblia. Proc Natl Acad Sci U S A92:5615–5619. doi: 10.1073/pnas.92.12.5615. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

314. Sun CH, Chou CF, Tai JH. 1998. Stable DNA transfection of the primitive protozoan pathogen Giardia lamblia. Mol Biochem Parasitol92:123–132. doi: 10.1016/S0166-6851(97)00239-9. [PubMed] [CrossRef] [Google Scholar]

315. Marcial-Quino J, Gomez-Manzo S, Fierro F, Rufino-Gonzalez Y, Ortega-Cuellar D, Sierra-Palacios E, Vanoye-Carlo A, Gonzalez-Valdez A, Torres-Arroyo A, Oria-Hernandez J, Reyes-Vivas H. 2017. RNAi-mediated specific gene silencing as a tool for the discovery of new drug targets in Giardia lamblia: evaluation using the NADH oxidase gene Genes8:303. doi: 10.3390/genes8110303. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

316. McInally SG, Hagen KD, Nosala C, Williams J, Nguyen K, Booker J, Jones K, Dawson SC. 2019. Robust and stable transcriptional repression in Giardia using CRISPRi. Mol Biol Cell30:119–130. doi: 10.1091/mbc.E18-09-0605. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

317. Lin ZQ, Gan SW, Tung SY, Ho CC, Su LH, Sun CH. 2019. Development of CRISPR/Cas9-mediated gene disruption systems in Giardia lamblia. PLoS One14:e0213594. doi: 10.1371/journal.pone.0213594. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

318. Cheissin EM. 1964. Ultrastructure of Lamblia duodenalis. I. Body surface, sucking disc and median bodies. J Protozool11:91–98. doi: 10.1111/j.1550-7408.1964.tb01725.x. [PubMed] [CrossRef] [Google Scholar]

319. Friend DS. 1966. The fine structure of Giardia muris. J Cell Biol29:317–332. doi: 10.1083/jcb.29.2.317. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

320. Feely DE, Erlandsen SL. 1985. Morphology of Giardia agilis: observation by scanning electron microscopy and interference reflexion microscopy. J Protozool32:691–693. doi: 10.1111/j.1550-7408.1985.tb03103.x. [PubMed] [CrossRef] [Google Scholar]

321. Erlandsen SL, Bemrick WJ. 1987. SEM evidence for a new species, Giardia psittaci. J Parasitol73:623–629. doi: 10.2307/3282146. [PubMed] [CrossRef] [Google Scholar]

322. Feely DE. 1988. Morphology of the cyst of Giardia microti by light and electron microscopy. J Protozool35:52–54. doi: 10.1111/j.1550-7408.1988.tb04075.x. [PubMed] [CrossRef] [Google Scholar]

323. Erlandsen SL, Bemrick WJ, Wells CL, Feely DE, Knudson L, Campbell SR, van Keulen H, Jarroll EL. 1990. Axenic culture and characterization of Giardia ardeae from the great blue heron (Ardea herodias). J Parasitol76:717–724. doi: 10.2307/3282988. [PubMed] [CrossRef] [Google Scholar]

324. Hillman A, Ash A, Elliot A, Lymbery A, Perez C, Thompson RCA. 2016. Confirmation of a unique species of Giardia, parasitic in the quenda (Isoodon obesulus). Int J Parasitol Parasites Wildl5:110–115. doi: 10.1016/j.ijppaw.2016.01.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

325. Lyu Z, Shao J, Xue M, Ye Q, Chen B, Qin Y, Wen J. 2018. A new species of Giardia Kunstler, 1882 (Sarcomastigophora: Hexamitidae) in hamsters. Parasit Vectors11:202. doi: 10.1186/s13071-018-2786-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

326. Monis PT, Andrews RH. 1998. Molecular epidemiology: assumptions and limitations of commonly applied methods. Int J Parasitol28:981–987. doi: 10.1016/s0020-7519(98)00042-3. [PubMed] [CrossRef] [Google Scholar]

327. Monis PT, Andrews RH, Mayrhofer G, Ey PL. 1999. Molecular systematics of the parasitic protozoan Giardia intestinalis. Mol Biol Evol16:1135–1144. doi: 10.1093/oxfordjournals.molbev.a026204. [PubMed] [CrossRef] [Google Scholar]

328. Ey PL, Mansouri M, Kulda J, Nohynkova E, Monis PT, Andrews RH, Mayrhofer G. 1997. Genetic analysis of Giardia from hoofed farm animals reveals artiodactyl-specific and potentially zoonotic genotypes. J Eukaryot Microbiol44:626–635. doi: 10.1111/j.1550-7408.1997.tb05970.x. [PubMed] [CrossRef] [Google Scholar]

329. Lasek-Nesselquist E, Welch DM, Sogin ML. 2010. The identification of a new Giardia duodenalis assemblage in marine vertebrates and a preliminary analysis of G. duodenalis population biology in marine systems. Int J Parasitol40:1063–1074. doi: 10.1016/j.ijpara.2010.02.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

330. Guo J, Chen Y, Zhou K, Li J. 2005. Distribution of rDNA in the nucleus of Giardia lamblia: detection by Ag-I silver stain. Anal Quant Cytol Histol27:79–82. [PubMed] [Google Scholar]

331. Xin DD, Wen JF, He D, Lu SQ. 2005. Identification of a Giardia krr1 hom*olog gene and the secondarily anucleolate condition of Giaridia lamblia. Mol Biol Evol22:391–394. doi: 10.1093/molbev/msi052. [PubMed] [CrossRef] [Google Scholar]

332. Feely DE, Dyer JK. 1987. Localization of acid phosphatase activity in Giardia lamblia and Giardia muris trophozoites. J Protozool34:80–83. doi: 10.1111/j.1550-7408.1987.tb03137.x. [PubMed] [CrossRef] [Google Scholar]

333. Touz MC, Lujan HD, Hayes SF, Nash TE. 2003. Sorting of encystation-specific cysteine protease to lysosome-like peripheral vacuoles in Giardia lamblia requires a conserved tyrosine-based motif. J Biol Chem278:6420–6426. doi: 10.1074/jbc.M208354200. [PubMed] [CrossRef] [Google Scholar]

334. Thirion J, Wattiaux R, Jadot M. 2003. The acid phosphatase positive organelles of the Giardia lamblia trophozoite contain a membrane bound cathepsin C activity. Biol Cell95:99–105. doi: 10.1016/s0248-4900(03)00006-6. [PubMed] [CrossRef] [Google Scholar]

335. Brodsky RE, SpencerHC, Jr, Schultz MG. 1974. Giardiasis in American travelers to the Soviet Union. J Infect Dis130:319–323. doi: 10.1093/infdis/130.3.319. [PubMed] [CrossRef] [Google Scholar]

336. Moore GT, Cross WM, McGuire D, Mollohan CS, Gleason NN, Healy GR, Newton LH. 1969. Epidemic giardiasis at a ski resort. N Engl J Med281:402–407. doi: 10.1056/NEJM196908212810802. [PubMed] [CrossRef] [Google Scholar]

337. Kent GP, Greenspan JR, Herndon JL, Mofenson LM, Harris JA, Eng TR, Waskin HA. 1988. Epidemic giardiasis caused by a contaminated public water supply. Am J Public Health78:139–143. doi: 10.2105/ajph.78.2.139. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

338. Shaw PK, Brodsky RE, Lyman DO, Wood BT, Hibler CP, Healy GR, Macleod KI, Stahl W, Schultz MG. 1977. A communitywide outbreak of giardiasis with evidence of transmission by a municipal water supply. Ann Intern Med87:426–432. doi: 10.7326/0003-4819-87-4-426. [PubMed] [CrossRef] [Google Scholar]

339. Osterholm MT, Forfang JC, Ristinen TL, Dean AG, Washburn JW, Godes JR, Rude RA, McCullough JG. 1981. An outbreak of foodborne giardiasis. N Engl J Med304:24–28. doi: 10.1056/NEJM198101013040106. [PubMed] [CrossRef] [Google Scholar]

340. Steen K, Damsgaard E. 2007. The Giardia epidemic in 2004 and out-of-hours service in Bergen. Tidsskr nor Laegeforen127:187–189. [PubMed] [Google Scholar]

341. Cama VA, Mathison BA. 2015. Infections by intestinal coccidia and Giardia duodenalis. Clin Lab Med35:423–444. doi: 10.1016/j.cll.2015.02.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

342. Zhang H, Morrison S, Tang Y-W. 2015. Multiplex PCR tests for detection of pathogens associated with gastroenteritis. Clin Lab Med35:461–486. doi: 10.1016/j.cll.2015.02.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

343. Ryan U, Paparini A, Oskam C. 2017. New technologies for detection of enteric parasites. Trends Parasitol33:532–546. doi: 10.1016/j.pt.2017.03.005. [PubMed] [CrossRef] [Google Scholar]

344. Hanson KE, Couturier MR. 2016. Multiplexed molecular diagnostics for respiratory, gastrointestinal, and central nervous system infections. Clin Infect Dis63:1361–1367. doi: 10.1093/cid/ciw494. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

345. Adam RD, Nellen JFJB, Zaat JOM, Speelman P. 2010. Giardia lamblia (giardiasis). InYu VLW, Raoult D (ed), Antimicrobial therapy and vaccines, 3rd ed, vol 1. Infectious Disease and Antimicrobial Agents, Antimicrobe, Pittsburgh, PA. [Google Scholar]

346. Nash TE, Aggarwal A, Adam RD, Conrad JT, MerrittJW, Jr.. 1988. Antigenic variation in Giardia lamblia. J Immunol141:636–641. [PubMed] [Google Scholar]

347. Adam RA. 2020. Giardiasis, p 707–711. InRyan ET, Hill DR, Solomon T, Aronson NE, Endy TP (ed), Hunter’s tropical medicine and emerging infectious diseases, 10th ed. Elsevier, New York, NY. [Google Scholar]

Giardia duodenalis: Biology and Pathogenesis (2024)

FAQs

What is the pathogenicity of Giardia duodenalis? ›

Giardia intestinalis infection causes enterocytes damage and loss of brush border of the epithelial cells of the intestine that leads to shortening of microvilli and altered epithelial barrier function. This pathology results in aqueous diarrhoea, steatorrhea, nausea, abdominal pain, vomiting and weight loss.

What is the biology of Giardia duodenalis? ›

Giardia duodenalis trophozoites are pear-shaped and measure 10-20 micrometers in length. In permanent, stained specimens, 2 large nuclei are usually visible. The sucking disks (used for attaching to the host's mucosal epithelium), median bodies, and flagella (8) may also be seen.

What is the disease caused by Giardia duodenalis? ›

Giardia duodenalis (Giardia for short) is a parasite. Illness caused by Giardia is called giardiasis. Giardia lives in the gut of infected people and animals and comes out of the body in poop. Giardia can survive for weeks to months outside the body (for example, in soil).

What is Giardia quizlet? ›

Giardiasis is a diarrheal disease caused by the microscopic parasite Giardia. A parasite is an organism that feeds off of another to survive. Once a person or animal (for example, cats, dogs, cattle, deer, and beavers) has been infected with Giardia, the parasite lives in the intestines and is passed in feces (poop).

What is the pathogen responsible for Giardia? ›

The flagellate protozoan Giardia intestinalis (previously known as G lamblia or G duodenalis), its causative agent, is the most commonly identified intestinal parasite in the United States [1, 2] and the most common protozoal intestinal parasite isolated worldwide.

What are the virulence factors of Giardia duodenalis? ›

Other putative Giardia virulence factors are cysteine proteases that degrade multiple host components including mucin, villin, tight junction proteins, immunoglobulins, defensins and cytokines.

How does Giardia duodenalis survive? ›

To survive within the intestine, Giardia undergoes antigenic variation, a process by which the parasite continuously switches its major surface molecules, allowing the parasite to evade the host's immune response and produce chronic and recurrent infections.

What is the difference between Giardia lamblia and Giardia duodenalis? ›

Giardia lamblia (syn. Giardia intestinalis, Giardia duodenalis) is a flagellated unicellular eukaryotic microorganism that commonly causes diarrheal disease throughout the world.

Is Giardia duodenalis a bacterium? ›

Giardia species are flagellated anaerobic protozoan (or protist) organisms characterized by their dyadic symmetry and presence of two symmetrical nuclei in the trophozoites. They are intestinal parasites of animals that range phylogenetically from amphibians to mammals, depending on the Giardia species.

Is Giardia a virus or bacteria? ›

Giardiasis is an intestinal (bowel) illness caused by a microscopic parasite called Giardia. It is a common illness that causes diarrhea (loose stool/poop).

Is Giardia a parasite or protozoa? ›

Giardia lamblia is a protozoan parasite that has two forms: cyst (inactive form) and trophozoite (active form). Infected persons can shed both trophozoites and cysts in stool.

What does Giardia do in the body? ›

Giardiasis (jee-are-DYE-uh-sis) is caused by the tiny Giardia parasite. The parasite attaches itself to the lining of the small intestines in humans, where it causes diarrhea and blocks the body's absorption of fats and carbohydrates from digested foods.

What is the pathogenic form of Giardia lamblia? ›

CHARACTERISTICS: G. lamblia is a flagellated enteric protozoan parasite 1. There are two stages in the lifecycle, a motile vegetative form (trophozoite) which reside in the small intestine and is responsible for disease manifestations and an infective resistant form (cyst) responsible for transmission.

What is the pathogenicity of parasitic infection? ›

The pathogenesis of parasitic diseases is complex. In general, parasites can cause pathology by mechanical disruption as they migrate through or displace tissues. Others secrete toxic substances, but the predominant pathological mechanism is via the human immune response to infection.

What is the pathogenicity of Entamoeba histolytica? ›

The pathogen Entamoeba histolytica can live asymptomatically in the human gut, or it can disrupt the intestinal barrier and induce life-threatening abscesses in different organs, most often in the liver.

Top Articles
What Credit Score Is Going to Help You Get a Car Loan?
List of All 50 US State Abbreviations
Foxy Roxxie Coomer
Encore Atlanta Cheer Competition
Dairy Queen Lobby Hours
Euro (EUR), aktuální kurzy měn
Voorraad - Foodtrailers
Jennette Mccurdy And Joe Tmz Photos
King Fields Mortuary
Premier Boating Center Conroe
Urban Dictionary Fov
Nitti Sanitation Holiday Schedule
Maplestar Kemono
Paradise leaked: An analysis of offshore data leaks
Tnt Forum Activeboard
Kylie And Stassie Kissing: A Deep Dive Into Their Friendship And Moments
Jang Urdu Today
Nordstrom Rack Glendale Photos
Ein Blutbad wie kein anderes: Evil Dead Rise ist der Horrorfilm des Jahres
Culver's Flavor Of The Day Taylor Dr
The Weather Channel Local Weather Forecast
Evil Dead Rise Showtimes Near Pelican Cinemas
Marion City Wide Garage Sale 2023
Rogue Lineage Uber Titles
Xxn Abbreviation List 2023
Pioneer Library Overdrive
Hannah Jewell
The Rise of "t33n leaks": Understanding the Impact and Implications - The Digital Weekly
Delta Rastrear Vuelo
Bozjan Platinum Coins
El agente nocturno, actores y personajes: quién es quién en la serie de Netflix The Night Agent | MAG | EL COMERCIO PERÚ
Free Robux Without Downloading Apps
Why The Boogeyman Is Rated PG-13
How Much Is Mink V3
2008 Chevrolet Corvette for sale - Houston, TX - craigslist
To Give A Guarantee Promise Figgerits
The Complete Guide To The Infamous "imskirby Incident"
Dmitri Wartranslated
Busch Gardens Wait Times
1v1.LOL Game [Unblocked] | Play Online
Telugu Moviez Wap Org
Search All of Craigslist: A Comprehensive Guide - First Republic Craigslist
Sam's Club Gas Prices Florence Sc
814-747-6702
Dragon Ball Super Super Hero 123Movies
Plumfund Reviews
Joy Taylor Nip Slip
Santa Ana Immigration Court Webex
Honeybee: Classification, Morphology, Types, and Lifecycle
Latest Posts
Article information

Author: Kelle Weber

Last Updated:

Views: 6265

Rating: 4.2 / 5 (53 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Kelle Weber

Birthday: 2000-08-05

Address: 6796 Juan Square, Markfort, MN 58988

Phone: +8215934114615

Job: Hospitality Director

Hobby: tabletop games, Foreign language learning, Leather crafting, Horseback riding, Swimming, Knapping, Handball

Introduction: My name is Kelle Weber, I am a magnificent, enchanting, fair, joyous, light, determined, joyous person who loves writing and wants to share my knowledge and understanding with you.