Does Chlorination Promote Antimicrobial Resistance in Waterborne Pathogens? Mechanistic Insight into Co-Resistance and Its Implication for Public Health (2024)

1. DeNegre A.A., Mbah M.L.N., Myers K., Fefferman N.H. Emergence of antibiotic resistance in immunocompromised host populations: A case study of emerging antibiotic resistant tuberculosis in AIDS patients. PLoS ONE. 2019;14:e0212969. doi:10.1371/journal.pone.0212969. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. León-Buitimea A., Garza-Cárdenas C.R., Garza-Cervantes J.A., Lerma-Escalera J.A., Morones-Ramírez J.R. The demand for new antibiotics: Antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Front. Microbiol. 2020;2020:1669. doi:10.3389/fmicb.2020.01669. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Sumi C.D., Heffernan A.J., Lipman J., Roberts J.A., Sime F.B. What antibiotic exposures are required to suppress the emergence of resistance for Gram-negative bacteria? A systematic review. Clin. Pharmaco*kinet. 2019;58:1407–1443. doi:10.1007/s40262-019-00791-z. [PubMed] [CrossRef] [Google Scholar]

4. Zhao X., Drlica K. Restricting the selection of antibiotic-resistant mutants: A general strategy derived from fluoroquinolone studies. Clin. Infect. Dis. 2001;33((Suppl. S3)):S147–S156. doi:10.1086/321841. [PubMed] [CrossRef] [Google Scholar]

5. Baquero F. Resistance to quinolones in gram-negative microorganisms: Mechanisms and prevention. Eur. Urol. 1990;17:3–12. doi:10.1159/000464084. [PubMed] [CrossRef] [Google Scholar]

6. Zhang N., Ye X., Wu Y., Huang Z., Gu X., Cai Q., Shen X., Jiang H., Ding H. Determination of the mutant selection window and evaluation of the killing of Mycoplasma gallisepticum by danofloxacin, doxycycline, tilmicosin, tylvalosin and valnemulin. PLoS ONE. 2017;12:e0169134. doi:10.1371/journal.pone.0169134. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Huang Z., Mao C., Wei Y., Gu X., Cai Q., Shen X., Ding H. Analysis of the mutant selection window and killing of Mycoplasma hyopneumoniae for doxycycline, tylosin, danofloxacin, tiamulin, and valnemulin. PLoS ONE. 2020;15:e0220350. doi:10.1371/journal.pone.0220350. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. García-León G., Sánchez M.B., Martínez J.L. The inactivation of intrinsic antibiotic resistance determinants widens the mutant selection window for quinolones in Stenotrophom*onas maltophilia. Antimicrob. Agents Chemother. 2012;56:6397–6399. doi:10.1128/AAC.01558-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Khan S., Beattie T.K., Knapp C.W. Relationship between antibiotic-and disinfectant-resistance profiles in bacteria harvested from tap water. Chemosphere. 2016;152:132–141. doi:10.1016/j.chemosphere.2016.02.086. [PubMed] [CrossRef] [Google Scholar]

10. Yuan Q.B., Guo M.T., Yang J. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: Implication for antibiotic resistance control. PLoS ONE. 2015;10:e0119403. doi:10.1371/journal.pone.0119403. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Liu S.S., Qu H.M., Yang D., Hu H., Liu W.L., Qiu Z.G., Hou A.M., Guo J., Li J.W., Shen Z.Q., et al. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Res. 2018;136:131–136. doi:10.1016/j.watres.2018.02.036. [PubMed] [CrossRef] [Google Scholar]

12. Xu L., Ouyang W., Qian Y., Su C., Su J., Chen H. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems. Environ. Pollut. 2016;213:119–126. doi:10.1016/j.envpol.2016.02.013. [PubMed] [CrossRef] [Google Scholar]

13. Jin M., Liu L., Wang D.N., Yang D., Liu W.L., Yin J., Yang Z.W., Wang H.R., Qiu Z.G., Shen Z.Q., et al. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. ISME J. 2020;114:1847–1856. doi:10.1038/s41396-020-0656-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. World Health Organisation Drinking-Water. 2019. [(accessed on 12 July 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water

15. World Health Organisation Water. 2020. [(accessed on 11 July 2021)]. Available online: https://www.afro.who.int/health-topics/water

16. Sabri N.A., Schmitt H., Van der Zaan B., Gerritsen H.W., Zuidema T., Rijnaarts H.H.M., Langenhoff A.A.M. Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. J. Environ. Chem. Eng. 2020;8:102245. doi:10.1016/j.jece.2018.03.004. [CrossRef] [Google Scholar]

17. Murray G.E., Tobin R.S., Junkins B., Kushner D.J. Effect of chlorination on antibiotic resistance profiles of sewage-related bacteria. Appl. Environ. Microbiol. 1984;48:73–77. doi:10.1128/aem.48.1.73-77.1984. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Rutala W.A., Stiegel M.M., Sarubbi F.A., Weber D.J. Susceptibility of antibiotic-susceptible and antibiotic-resistant hospital bacteria to disinfectants. Infect. Control Hosp. Epidemiol. 1997;18:417–421. doi:10.2307/30141249. [PubMed] [CrossRef] [Google Scholar]

19. Maertens H., De Reu K., Meyer E., Van Coillie E., Dewulf J. Limited association between disinfectant use and either antibiotic or disinfectant susceptibility of Escherichia coli in both poultry and pig husbandry. BMC Vet. Res. 2019;15:310. doi:10.1186/s12917-019-2044-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Al-Abri M., Al-Ghafri B., Bora T., Dobretsov S., Dutta J., Castelletto S., Rosa L., Boretti A. Chlorination disadvantages and alternative routes for biofouling control in reverse osmosis desalination. NPJ Clean Water. 2019;2:2. doi:10.1038/s41545-018-0024-8. [CrossRef] [Google Scholar]

21. Goyal R.V., Patel H.M. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply. Appl. Water Sci. 2015;5:311–319. doi:10.1007/s13201-014-0193-7. [CrossRef] [Google Scholar]

22. Musz-Pomorska A., Widomski M.K. Variant analysis of the chlorination efficiency of water in a selected water supply network. Proc. ECOpole. 2020;14:19–28. [Google Scholar]

23. Calomiris J., Christman K. How Does Chlorine Added to Drinking Water Kill Bacteria and Other Harmful Organisms? Why Doesn’t It Harm Us? Scientific American. [(accessed on 5 August 2021)]. Available online: https://www.scientificamerican.com/article/how-does-chlorine-added-t/

24. Venkobachar C., Iyengar L., Rao A.P. Mechanism of disinfection: Effect of chlorine on cell membrane functions. Water Res. 1977;11:727–729. doi:10.1016/0043-1354(77)90114-2. [CrossRef] [Google Scholar]

25. Haas C.N. Ph.D. Thesis. Department of Civil Engineering, the University of Illinois at Urbana-Champaign; Champaign, IL, USA: 1978. Mechanisms of Inactivation of New Indicators of Disinfection Efficiency by Free Available Chlorine; p. 158. [Google Scholar]

26. Chang S.L. Modern concept of disinfection. JSEDA. 1971;97:689–707. doi:10.1061/JSEDAI.0001315. [CrossRef] [Google Scholar]

27. Mizozoe M., Otaki M., Aikawa K. The mechanism of chlorine damage using enhanced green fluorescent protein-expressing Escherichia coli. Water. 2019;11:2156. doi:10.3390/w11102156. [CrossRef] [Google Scholar]

28. Bridges D.F., Lacombe A., Wu V.C. Integrity of the Escherichia coli O157: H7 cell wall and membranes after chlorine dioxide treatment. Front. Microbiol. 2020;11:888. doi:10.3389/fmicb.2020.00888. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Reed B., Shaw R., Chatterton K. Technical Notes on Drinking-Water, Sanitation and Hygiene in Emergencies. WHO, Water, Engineering and Development Centre; Loughborough, UK: 2013. [Google Scholar]

30. Adefisoye M.A., Okoh A.I. Ecological and public health implications of the discharge of multidrug-resistant bacteria and physicochemical contaminants from treated wastewater effluents in the Eastern Cape, South Africa. Water. 2017;9:562. doi:10.3390/w9080562. [CrossRef] [Google Scholar]

31. National Water Act . Revision of General Authorization in Terms of Section 39 of the National Water Act, 1998 (Act No. 36 of 1998) (The Act) Volume 26187 South African Government Gazette; Pretoria, South Africa: 1998. Gazette No. 19182, Notice No. 1091; National Water Act: 1998. [Google Scholar]

32. Yang L., Chen X., She Q., Cao G., Liu Y., Chang V.W.C., Tang C.Y. Regulation, formation, exposure, and treatment of disinfection by-products (DBPs) in swimming pool waters: A critical review. Environ. Int. 2018;121:1039–1057. doi:10.1016/j.envint.2018.10.024. [PubMed] [CrossRef] [Google Scholar]

33. Al-Berfkani M.I., Zubair A.I., Bayazed H. Assessment of chlorine resistant bacteria and their susceptibility to antibiotic from water distribution system in Duhok province. J. Appl. Biol. Biotechnol. 2014;2:010–013. [Google Scholar]

34. Owoseni M.C., Olaniran A.O., Okoh A.I. Chlorine tolerance and inactivation of Escherichia coli recovered from wastewater treatment plants in the Eastern Cape, South Africa. Appl. Sci. 2017;7:810. doi:10.3390/app7080810. [CrossRef] [Google Scholar]

35. Jathar S., Shinde D., Dakhni S., Fernandes A., Jha P., Desai N., Jobby R. Identification and characterization of chlorine-resistant bacteria from water distribution sites of Mumbai. Arch. Microbiol. 2021;203:5241–5248. doi:10.1007/s00203-021-02503-3. [PubMed] [CrossRef] [Google Scholar]

36. Martin D.J., Wesgate R.L., Denyer S.P., McDonnell G., Maillard J.Y. Bacillus subtilis vegetative isolate surviving chlorine dioxide exposure: An elusive mechanism of resistance. J. Appl. Microbiol. 2015;119:1541–1551. doi:10.1111/jam.12963. [PubMed] [CrossRef] [Google Scholar]

37. Momba M.N.B., Kfir R., Venter S.N., Cloete T.E. An overview of biofilm formation in distribution systems and its impact on the deterioration of water quality. Water SA. 2000;26:59–66. [Google Scholar]

38. Bridier A., Briandet R., Thomas V., Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: A review. Biofouling. 2011;27:1017–1032. doi:10.1080/08927014.2011.626899. [PubMed] [CrossRef] [Google Scholar]

39. Du Z., Nandakumar R., Nickerson K.W., Li X. Proteomic adaptations to starvation prepare Escherichia coli for disinfection tolerance. Water Res. 2015;69:110–119. doi:10.1016/j.watres.2014.11.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Falkinham J.O., Pruden A., Edwards M. Opportunistic premise plumbing pathogens: Increasingly important pathogens in drinking water. Pathogens. 2015;4:373–386. doi:10.3390/pathogens4020373. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Shrivastava R., Upreti R.K., Jain S.R., Prasad K.N., Seth P.K., Chaturvedi U.C. Suboptimal chlorine treatment of drinking water leads to selection of multidrug-resistant Pseudomonas aeruginosa. Ecotoxicol. Environ. Saf. 2004;58:277–283. doi:10.1016/S0147-6513(03)00107-6. [PubMed] [CrossRef] [Google Scholar]

42. Karumathil D.P., Yin H.B., Kollanoor-Johny A., Venkitanarayanan K. Effect of chlorine exposure on the survival and antibiotic gene expression of multidrug-resistant Acinetobacter baumannii in water. Int. J. Environ. Res. Public Health. 2014;11:1844–1854. doi:10.3390/ijerph110201844. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Martins S.C.S., Júnior G.D.S.F., de Melo Machado B., Martins C.M. Chlorine and antibiotic-resistant bacilli isolated from an effluent treatment plant. Acta Sci. Technol. 2013;35:3–9. doi:10.4025/actascitechnol.v35i1.12951. [CrossRef] [Google Scholar]

44. Owoseni M., Okoh A. Assessment of chlorine tolerance profile of Citrobacter species recovered from wastewater treatment plants in Eastern Cape, South Africa. EMA. 2017;189:201. doi:10.1007/s10661-017-5900-z. [PubMed] [CrossRef] [Google Scholar]

45. Ridgway H.F., Olson B.H. Chlorine resistance patterns of bacteria from two drinking water distribution systems. Appl. Environ. Microbiol. 1982;44:972–987. doi:10.1128/aem.44.4.972-987.1982. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. LeChevallier M.W., Hassenauer T.S., Camper A.K., McFETERS G.A. Disinfection of bacteria attached to granular activated carbon. Appl. Environ. Microbiol. 1984;48:918–923. doi:10.1128/aem.48.5.918-923.1984. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. King C.H., Shotts E.B., Wooley R.E., Porter K.G. Survival of coliforms and bacterial pathogens within protozoa during chlorination. Appl. Environ. Microbiol. 1988;54:3023–3033. doi:10.1128/aem.54.12.3023-3033.1988. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Owoseni M., Okoh A. Evidence of emerging challenge of chlorine tolerance of Enterococcus species recovered from wastewater treatment plants. Int. Biodeterior. Biodegrad. 2017;120:216–223. doi:10.1016/j.ibiod.2017.02.016. [CrossRef] [Google Scholar]

49. Dupuy M., Mazoua S., Berne F., Bodet C., Garrec N., Herbelin P., Ménard-Szczebara F., Oberti S., Rodier M.H., Soreau S., et al. Efficiency of water disinfectants against Legionella pneumophila and Acanthamoeba. Water Res. 2011;45:1087–1094. doi:10.1016/j.watres.2010.10.025. [PubMed] [CrossRef] [Google Scholar]

50. Martínez-Hernández S., Vázquez-Rodríguez G.A., Beltrán-Hernández R.I., Prieto-García F., Miranda-López J.M., Franco-Abuín C.M., Álvarez-Hernández A., Iturbe U., Coronel-Olivares C. Resistance and inactivation kinetics of bacterial strains isolated from the non-chlorinated and chlorinated effluents of a WWTP. Int. J. Environ. Res. Public Health. 2013;10:3363–3383. doi:10.3390/ijerph10083363. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Adefisoye M.A., Okoh A.I. Identification and antimicrobial resistance prevalence of pathogenic Escherichia coli strains from treated wastewater effluents in Eastern Cape, South Africa. Microbiologyopen. 2016;5:143–151. doi:10.1002/mbo3.319. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Buelow E., Ploy M.C., Dagot C. Role of pollution on the selection of antibiotic resistance and bacterial pathogens in the environment. Curr. Opin. Microbiol. 2021;64:117–124. doi:10.1016/j.mib.2021.10.005. [PubMed] [CrossRef] [Google Scholar]

53. Cantón R., Morosini M.I. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol. Rev. 2011;35:977–991. doi:10.1111/j.1574-6976.2011.00295.x. [PubMed] [CrossRef] [Google Scholar]

54. Li X., Zhao X., Drlica K. Selection of Streptococcus pneumoniae mutants having reduced susceptibility to levofloxacin and moxifloxacin. Antimicrob. Agents Chemother. 2002;46:522–524. doi:10.1128/AAC.46.2.522-524.2002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Drlica K. The mutant selection window and antimicrobial resistance. J. Antimicrob. Chemother. 2003;52:11–17. doi:10.1093/jac/dkg269. [PubMed] [CrossRef] [Google Scholar]

56. Urban C., Rahman N., Zhao X. Fluoroquinolone resistant Streptococcus pneumoniae associated with levofloxacin therapy. J. Infect. Dis. 2001;184:794–798. doi:10.1086/323086. [PubMed] [CrossRef] [Google Scholar]

57. Guo M.T., Yuan Q.B., Yang J. Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater. Environ. Sci. Technol. 2015;49:5771–5778. doi:10.1021/acs.est.5b00644. [PubMed] [CrossRef] [Google Scholar]

58. Ma L., Yang H., Guan L., Liu X., Zhang T. Risks of antibiotic resistance genes and antimicrobial resistance under chlorination disinfection with public health concerns. Environ. Int. 2022;158:106978. doi:10.1016/j.envint.2021.106978. [PubMed] [CrossRef] [Google Scholar]

59. Ojemaye M.O., Adefisoye M.A., Okoh A.I. Nanotechnology as a viable alternative for the removal of antimicrobial resistance determinants from discharged municipal effluents and associated watersheds: A review. J. Environ. Manag. 2020;275:111234. doi:10.1016/j.jenvman.2020.111234. [PubMed] [CrossRef] [Google Scholar]

60. Reyes-Fernández E.Z., Schuldiner S. Acidification of cytoplasm in Escherichia coli provides a strategy to cope with stress and facilitates development of antibiotic resistance. Sci. Rep. 2020;10:9954. doi:10.1038/s41598-020-66890-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Bourély C., Cazeau G., Jarrige N., Haenni M., Lupo A., Madec J.Y., Leblond A., Gay E. Co-resistance to amoxicillin and tetracycline as an indicator of multidrug resistance in Escherichia coli isolates from animals. Front. Microbiol. 2019;10:2288. doi:10.3389/fmicb.2019.02288. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Landecker H. Antimicrobials before antibiotics: War, peace, and disinfectants. Palgrave Commun. 2019;5:1–11. doi:10.1057/s41599-019-0251-8. [CrossRef] [Google Scholar]

63. Voth W., Jakob U. Stress-activated chaperones: A first line of defense. Trends Biochem. Sci. 2017;42:899–913. doi:10.1016/j.tibs.2017.08.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Goemans C.V., Collet J.F. Stress-induced chaperones: A first line of defense against the powerful oxidant hypochlorous acid. F1000Research. 2019;8:1678. doi:10.12688/f1000research.19517.1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. da Cruz Nizer W.S., Inkovskiy V., Overhage J. Surviving reactive chlorine stress: Responses of gram-negative bacteria to hypochlorous acid. Microorganisms. 2020;8:1220. doi:10.3390/microorganisms8081220. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Cornelis P., Wei Q., Andrews S.C., Vinckx T. Iron homeostasis and management of oxidative stress response in bacteria. Metallomics. 2011;3:540–549. doi:10.1039/c1mt00022e. [PubMed] [CrossRef] [Google Scholar]

67. Wang Z., Fang Y., Zhi S., Simpson D.J., Gill A., McMullen L.M., Neumann N.F., Gänzle M.G. The locus of heat resistance confers resistance to chlorine and other oxidizing chemicals in Escherichia coli. Appl. Environ. Microbiol. 2020;86:e02123-19. doi:10.1128/AEM.02123-19. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Butler C.S., Boltz J.P. Biofilm processes and control in water and wastewater treatment. In: Ahuja S., editor. Comprehensive Water Quality and Purification. Elsevier; Waltham, MA, USA: 2014. pp. 90–107. [Google Scholar]

69. Simões L.C., Simões M. Biofilms in drinking water: Problems and solutions. Rsc Adv. 2013;3:2520–2533. doi:10.1039/C2RA22243D. [CrossRef] [Google Scholar]

70. Sehar S., Naz I. Role of the biofilms in wastewater treatment. In: Dhanasekaran D., Thajuddin N., editors. Microbial Biofilms-Importance and Applications. IntechOpen; Rijeka, Croatia: 2016. pp. 121–144. [Google Scholar]

71. Muhammad M.H., Idris A.L., Fan X., Guo Y., Yu Y., Jin X., Qiu J., Guan X., Huang T. Beyond risk: Bacterial biofilms and their regulating approaches. Front. Microbiol. 2020;11:928. doi:10.3389/fmicb.2020.00928. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Cepas V., López Y., Muñoz E., Rolo D., Ardanuy C., Martí S., Xercavins M., Horcajada J.P., Bosch J., Soto S.M. Relationship between biofilm formation and antimicrobial resistance in gram-negative Bacteria. Microb. Drug Resist. 2019;25:72–79. doi:10.1089/mdr.2018.0027. [PubMed] [CrossRef] [Google Scholar]

73. Hall C.W., Mah T.F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017;41:276–301. doi:10.1093/femsre/f*ck010. [PubMed] [CrossRef] [Google Scholar]

74. Singh S., Singh S.K., Chowdhury I., Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J. 2017;11:53–62. doi:10.2174/1874285801711010053. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Bas S., Kramer M., Stopar D. Biofilm surface density determines biocide effectiveness. Front. Microbiol. 2017;8:2443. doi:10.3389/fmicb.2017.02443. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Cai Y. Ph.D. Dissertation. University of Southampton; England, UK: 2018. Molecular Mechanism of Nitric Oxide-Mediated Regulation of Intracellular Cyclic-di-GMP in Pseudomonas Aeruginosa Biofilms. [Google Scholar]

77. Mah T.F. Biofilm-specific antibiotic resistance. Future Microbiol. 2012;7:1061–1072. doi:10.2217/fmb.12.76. [PubMed] [CrossRef] [Google Scholar]

78. Hall C.W., Hinz A.J., Gagnon L.B.P., Zhang L., Nadeau J.P., Copeland S., Saha B., Mah T.F. Pseudomonas aeruginosa biofilm antibiotic resistance gene ndvB expression requires the RpoS stationary-phase sigma factor. Appl. Environ. Microbiol. 2018;84:e02762-17. doi:10.1128/AEM.02762-17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Alcalde-Rico M., Hernando-Amado S., Blanco P., Martínez J.L. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front. Microbiol. 2016;7:1483. doi:10.3389/fmicb.2016.01483. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Slipski C.J., Zhanel G.G., Bay D.C. Biocide selective TolC-independent efflux pumps in Enterobacteriaceae. J. Membr. Biol. 2018;251:15–33. doi:10.1007/s00232-017-9992-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Abdi S.N., Ghotaslou R., Ganbarov K., Mobed A., Tanomand A., Yousefi M., Asgharzadeh M., Kafil H.S. Acinetobacter baumannii efflux pumps and antibiotic resistance. Infect. Drug. Resist. 2020;13:423. doi:10.2147/IDR.S228089. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Ughachukwu P.O., Unekwe P.C. Efflux pump-mediated resistance in chemotherapy. Ann. Med. Health Sci. Res. 2012;2:191–198. doi:10.4103/2141-9248.105671. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Delmar J.A., Su C.C., Yu E.W. Bacterial multidrug efflux transporters. Annu. Rev. Biophys. 2014;43:93–117. doi:10.1146/annurev-biophys-051013-022855. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Rahman T., Yarnall B., Doyle D.A. Efflux drug transporters at the forefront of antimicrobial resistance. Eur. Biophys. J. 2017;46:647–653. doi:10.1007/s00249-017-1238-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Perland E., Fredriksson R. Classification systems of secondary active transporters. TIPS. 2017;38:305–315. doi:10.1016/j.tips.2016.11.008. [PubMed] [CrossRef] [Google Scholar]

86. Cacciotto P., Ramaswamy V.K., Malloci G., Ruggerone P., Vargiu A.V. Molecular modeling of multidrug properties of resistance nodulation division (RND) transporters. In: Yamaguchi A., Nishino K., editors. Bacterial Multidrug Exporters. Humana Press; New York, NY, USA: 2018. pp. 179–219. [PubMed] [Google Scholar]

87. Morita Y., Tomida J., Kawamura Y. Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol. 2014;4:422. doi:10.3389/fmicb.2013.00422. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Van der Deen M., De Vries E.G., Timens W., Scheper R.J., Timmer-Bosscha H., Postma D.S. ATP-binding cassette (ABC) transporters in normal and pathological lung. Respir. Res. 2005;6:59. doi:10.1186/1465-9921-6-59. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Wilkens S. Structure and mechanism of ABC transporters. F1000prime Rep. 2015;7:14. doi:10.12703/P7-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Blanco P., Hernando-Amado S., Reales-Calderon J.A., Corona F., Lira F., Alcalde-Rico M., Bernardini A., Sanchez M.B., Martinez J.L. Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganisms. 2016;4:14. doi:10.3390/microorganisms4010014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Gould V.C., Okazaki A., Avison M.B. Coordinate hyperproduction of SmeZ and SmeJK efflux pumps extends drug resistance in Stenotrophom*onas maltophilia. Antimicrob. Agents Chemother. 2013;57:655–657. doi:10.1128/AAC.01020-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Poonsuk K., Tribuddharat C., Chuanchuen R. Simultaneous overexpression of multidrug efflux pumps in Pseudomonas aeruginosa non-cystic fibrosis clinical isolates. Can. J. Microbiol. 2014;60:437–443. doi:10.1139/cjm-2014-0239. [PubMed] [CrossRef] [Google Scholar]

Does Chlorination Promote Antimicrobial Resistance in Waterborne Pathogens? Mechanistic Insight into Co-Resistance and Its Implication for Public Health (2024)

FAQs

Does Chlorination Promote Antimicrobial Resistance in Waterborne Pathogens? Mechanistic Insight into Co-Resistance and Its Implication for Public Health? ›

While chlorine has been effective in reducing outbreaks of waterborne diseases, the molecular mechanisms underlining its roles in promoting the evolution and spread of resistance remain a grey area, with its attendant ecological and public health implications.

What is the antimicrobial mechanism of chlorine? ›

Antimicrobial mechanism of chlorine dioxide (ClO2) is determined by oxidation ability and action site. ClO2 stimulates plant innate immunity. ClO2 maintains horticultural produce quality in postharvest management applications. ClO2 is a potential controlled release agent in antimicrobial packaging.

How can the public be protected against chlorine-resistant pathogens? ›

Inactivation technology of chlorine-resistant bacteria

At present, researches on inactivation technologies for chlorine-resistant bacteria mainly include chemical disinfectant inactivation, physical disinfection method inactivation, and combined disinfection process inactivation.

What general types of pathogens are most resistant to chlorination? ›

protozoa, such as cryptosporidium (which causes diarrhea), and giardia, also known for its severe gastrointestinal effects. Some of these pathogens are highly resistant to chlorine and can survive for days in typical chlorine concentrations; and. hepatitis A and noroviruses.

Does chlorine affect antibiotics? ›

Exposure to chlorine can stimulate the expression of efflux pumps and drug resistance operons, as well as induce mutations in certain genes, leading to increased antibiotic resistance [16].

What is the mechanism of action of chlorination? ›

Chlorine kills pathogens such as bacteria and viruses by breaking the chemical bonds in their molecules. Disinfectants that are used for this purpose consist of chlorine compounds which can exchange atoms with other compounds, such as enzymes in bacteria and other cells.

Which bacteria is resistant to chlorination? ›

Among them, Bacillus, Mycobacterium and Tsukamurella are the more common genera of chlorine-resistant bacteria at present.

What are the advantages and disadvantages of chlorination? ›

Chlorination is the most commonly used disinfection process to pretreat the water to reduce biofouling. Although chlorination is widely used, it has several disadvantages, such as formation of disinfection by-products and being ineffective against some types of microbes.

Does chlorination remove pathogens? ›

Chlorination is the process of adding chlorine to drinking water to kill parasites, bacteria, and viruses. Different processes can be used to achieve safe levels of chlorine in drinking water.

Is chlorination the most common means of disinfection used today to protect the public's health? ›

The most common method of disinfection is through the addition of chlorine to drinking water supplies. Chlorine effectively kills waterborne bacteria and viruses and continues to keep the water safe as it travels from the treatment plant to the consumer's tap.

What is the most resistant to antimicrobial agents? ›

Important examples of antimicrobial resistance strains of bacteria are: methicillin-resistant Staphylococcus aureus (MRSA) vancomycin-resistant Enterococcus (VRE) multi-drug-resistant Mycobacterium tuberculosis (MDR-TB)

What disease does chlorination reduce? ›

Many public water systems add chlorine (a process known as "chlorination") to their water supply for the purpose of disinfection. Disinfection kills or inactivates harmful microorganisms which can cause illnesses such as typhoid, cholera, hepatitis and giardiasis.

What organisms have the greatest resistance to chlorine? ›

The most resistant microorganisms were able to survive a 2-min exposure to 10 mg of free chlorine per liter. These included gram-positive spore-forming bacilli, actinomycetes, and some micrococci.

Can bacteria grow in chlorinated water? ›

While it can kill most bacteria in less than a minute, other germs are more chlorine-tolerant. For instance, one of the common causes of recreational water diarrheal illness, Crypto, can survive as long as 10 days in a properly chlorinated pool.

Can chlorine weaken your immune system? ›

The disinfectant properties of chlorine can affect our body's natural balance of good and bad bacteria, known as the microbiome. This disruption may lead to digestive issues and a weakened immune system.

Is chlorine an antimicrobial agent? ›

Chlorine dioxide (ClO2) is a powerful disinfectant that disrupts protein synthesis and cell membranes and a strong antioxidant that inhibits microbial growth. ClO2 has demonstrated antiviral, antibacterial and antifungal properties in vitro.

What is the action of chlorine on microbes? ›

Chlorination is one of the most widely used processes for microbial control (5) in both drinking water and wastewater processing (16). Chlorine is a powerful antimicrobial substance due to its potential oxidizing capacity.

What is the reaction mechanism of chlorine? ›

A chlorine molecule absorbs energy, from either ultraviolet light or high temperatures, and the Cl─Cl bond breaks hom*olytically to give two chlorine atoms. They are electron-deficient, highly reactive radicals. This step starts the reaction and is called the initiation step.

What type of mechanism is chlorination? ›

The mechanism involves a chain reaction. During a chain reaction, for every reactive species you start off with, a new one is generated at the end - and this keeps the process going. The over-all process is known as free radical substitution, or as a free radical chain reaction.

What is the primary mechanism of action of chlorine on microbial cells? ›

The primary mechanism of action for halogens such as chlorine or iodine against microbial cells involves disruption of cellular processes through protein denaturation and alteration of cellular components.

Top Articles
10 Best Business Accounting and Taxation (BAT) Courses in India
Discounted Cash Flow (DCF) Explained With Formula and Examples
Katie Pavlich Bikini Photos
Gamevault Agent
Hocus Pocus Showtimes Near Harkins Theatres Yuma Palms 14
Free Atm For Emerald Card Near Me
Craigslist Mexico Cancun
Hendersonville (Tennessee) – Travel guide at Wikivoyage
Doby's Funeral Home Obituaries
Vardis Olive Garden (Georgioupolis, Kreta) ✈️ inkl. Flug buchen
Select Truck Greensboro
Things To Do In Atlanta Tomorrow Night
Non Sequitur
How To Cut Eelgrass Grounded
Pac Man Deviantart
Alexander Funeral Home Gallatin Obituaries
Craigslist In Flagstaff
Shasta County Most Wanted 2022
Energy Healing Conference Utah
Testberichte zu E-Bikes & Fahrrädern von PROPHETE.
Aaa Saugus Ma Appointment
Geometry Review Quiz 5 Answer Key
Walgreens Alma School And Dynamite
Bible Gateway passage: Revelation 3 - New Living Translation
Yisd Home Access Center
Home
Shadbase Get Out Of Jail
Gina Wilson Angle Addition Postulate
Celina Powell Lil Meech Video: A Controversial Encounter Shakes Social Media - Video Reddit Trend
Walmart Pharmacy Near Me Open
A Christmas Horse - Alison Senxation
Ou Football Brainiacs
Access a Shared Resource | Computing for Arts + Sciences
Pixel Combat Unblocked
Cvs Sport Physicals
Mercedes W204 Belt Diagram
Rogold Extension
'Conan Exiles' 3.0 Guide: How To Unlock Spells And Sorcery
Teenbeautyfitness
Weekly Math Review Q4 3
Facebook Marketplace Marrero La
Nobodyhome.tv Reddit
Topos De Bolos Engraçados
Gregory (Five Nights at Freddy's)
Grand Valley State University Library Hours
Holzer Athena Portal
Hampton In And Suites Near Me
Stoughton Commuter Rail Schedule
Bedbathandbeyond Flemington Nj
Free Carnival-themed Google Slides & PowerPoint templates
Otter Bustr
Selly Medaline
Latest Posts
Article information

Author: Kieth Sipes

Last Updated:

Views: 6025

Rating: 4.7 / 5 (67 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Kieth Sipes

Birthday: 2001-04-14

Address: Suite 492 62479 Champlin Loop, South Catrice, MS 57271

Phone: +9663362133320

Job: District Sales Analyst

Hobby: Digital arts, Dance, Ghost hunting, Worldbuilding, Kayaking, Table tennis, 3D printing

Introduction: My name is Kieth Sipes, I am a zany, rich, courageous, powerful, faithful, jolly, excited person who loves writing and wants to share my knowledge and understanding with you.