The Regulation of p53 Growth Suppression (2024)

1.

Agarwal ML, Taylor WR, Chernov MV. et al. The p53 network. J Biol Chem. 1998;273:1–4. [PubMed: 9417035]

2.

Almog N, Rotter V. An insight into the life of p53: a protein coping with many functions. Biochim Biophys Acta. 1998;1378:R43–R54. [PubMed: 9875245]

3.

Bates S, Vousden KH. Mechanisms of p53-mediated apoptosis. Cell Mol Life Sci. 1999;55:28–37. [PubMed: 10065149]

4.

Colman MS, Afshari CA, Barrett JC. Regulation of p53 stability and activity in response to genotoxic stress. Mutat Res. 2000;462:179–188. [PubMed: 10767629]

5.

Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage. Oncogene. 1999;18:7644–7655. [PubMed: 10618704]

6.

Ljungman M. Dial 9-1-1 for p53: mechanisms of p53 activation by cellular stress. Neoplasia. 2000;2:208–225. [PMC free article: PMC1507568] [PubMed: 10935507]

7.

Oren M. Regulation of the p53 tumor suppressor protein. J Biol Chem. 1999;274:36031–36034. [PubMed: 10593882]

8.

Vogt Sionov R, Haupt Y. The cellular response to p53: the decision between life and death. Oncogene. 1999;18:6145–6157. [PubMed: 10557106]

9.

Choi J, Donehower LA. p53 in embryonic development: maintaining a fine balance. Cell Mol Life Sci. 1999;55:38–47. [PubMed: 10065150]

10.

Akashi M, Koeffler HP. Li-Fraumeni syndrome and the role of the p53 tumor suppressor gene in cancer susceptibility. Clin Obstet Gynecol. 1998;41:172–199. [PubMed: 9504235]

11.

Soussi T. The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann N Y Acad Sci. 2000;910:121–137. [PubMed: 10911910]

12.

Momand J, Wu HH, Dasgupta G. MDM2-master regulator of the p53 tumor suppressor protein. Gene. 2000;242:15–29. [PubMed: 10721693]

13.

Sherr CJ, Weber JD. The ARF/p53 pathway. Curr Opin Genet Dev. 2000;10:94–99. [PubMed: 10679383]

14.

Carr AM. Cell cycle.Piecing together the p53 puzzle. Science. 2000;287:1765–1766. [PubMed: 10755928]

15.

Appella E, Anderson CW. Signaling to p53: breaking the posttranslational modification code. Pathol Biol. 2000;48:227–245. [PubMed: 10858956]

16.

Ashcroft M, Kubbutat MH, Vousden KH. Regulation of p53 function and stability by phosphorylation. Mol Cell Biol. 1999;19:1751–1758. [PMC free article: PMC83968] [PubMed: 10022862]

17.

Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 1998;12:2973–2983. [PubMed: 9765199]

18.

Jimenez GS, Khan SH, Stommel JM, Wahl GM. p53 regulation by post-translational modification and nuclear retention in response to diverse stresses. Oncogene. 1999;18:7656–7665. [PubMed: 10618705]

19.

Meek DW. Mechanisms of switching on p53: a role for covalent modification? Oncogene. 1999;18:7666–7675. [PubMed: 10618706]

20.

Prives C, Hall PA. The p53 pathway. J Pathol. 1999;187:112–126. [PubMed: 10341712]

21.

Freedman DA, Wu L, Levine AJ. Functions of the MDM2 oncoprotein. Cell Mol Life Sci. 1999;55:96–107. [PubMed: 10065155]

22.

Juven Gershon T, Oren M. Mdm2: the ups and downs. Mol Med. 1999;5:71–83. [PMC free article: PMC2230410] [PubMed: 10203572]

23.

Bar-On RL, Maya R, Segel LA. et al. Generation of oscillations by the p53-Mdm2 feedback loop: A theoretical and experimental study. Proc Natl Acad Sci U S A. 2000;97:11250–11255. [PMC free article: PMC17186] [PubMed: 11016968]

24.

Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature. 1995;378:206–208. [PubMed: 7477327]

25.

Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995;378:203–206. [PubMed: 7477326]

26.

de Rozieres S, Maya R, Oren M, Lozano G. The loss of mdm2 induces p53-mediated apoptosis. Oncogene. 2000;19:1691–1697. [PubMed: 10763826]

27.

Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–299. [PubMed: 9153395]

28.

Kubbutat M H G, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature. 1997;387:299–303. [PubMed: 9153396]

29.

Blagosklonny MV. p53 from complexity to simplicity: mutant p53 stabilization, gain-of-function, and dominant-negative effect. FASEB J. 2000;14:1901–1907. [PubMed: 11023974]

30.

Buschmann T, Minamoto T, Wagle N. et al. Analysis of JNK, Mdm2 and p14ARF contribution to the regulation of mutant p53 stability. J Mol Biol. 2000;295:1009–1021. [PubMed: 10656807]

31.

Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 1997;420:25–27. [PubMed: 9450543]

32.

Fang S, Jensen JP, Ludwig RL. et al. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem. 2000;275:8945–8951. [PubMed: 10722742]

33.

Honda R, Yasuda H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene. 2000;19:1473–1476. [PubMed: 10723139]

34.

Kubbutat M H G, Ludwig RL, Ashcroft M, Vousden KH. Regulation of Mdm2-directed degradation by the C-terminus of p53. Mol Cell Biol. 1998;18:5690–5698. [PMC free article: PMC109155] [PubMed: 9742086]

35.

Maki CG. Oligomerization is required for p53 to be efficiently ubiquitinated by MDM2. J Biol Chem. 1999;274:16531–16535. [PubMed: 10347217]

36.

Nakamura S, Roth JA, Mukhopadhyay T. Multiple lysine mutations in the C-terminal domain of p53 interfere with Mdm2-dependent protein degradation and ubiquitination. Mol Cell Biol. 2000;20:9391–9398. [PMC free article: PMC102195] [PubMed: 11094089]

37.

Rodriguez MS, Desterro J M P, Lain S. et al. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol Cell Biol. 2000;20:8458–8467. [PMC free article: PMC102152] [PubMed: 11046142]

38.

Berger M, Vogt Sionov R, Levine AJ, Haupt Y. A role for the polyproline domain of p53 in its regulation by Mdm2. J Biol Chem. 2001;276:3785–3790. [PubMed: 11053443]

39.

Gu J, Chen D, Rosenblum J. et al. Identification of a sequence element from p53 that signals for Mdm2-targeted degradation. Mol Cell Biol. 2000;20:1243–1253. [PMC free article: PMC85255] [PubMed: 10648610]

40.

Fuchs SY, Adler V, Buschmann T. et al. JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev. 1998;12:2658–2663. [PMC free article: PMC317120] [PubMed: 9732264]

41.

Wadgaonkar R, Collins T. Murine double minute (MDM2) blocks p53-coactivator interaction, a new mechanism for inhibition of p53-dependent gene expression. J Biol Chem. 1999;274:13760–13767. [PubMed: 10318779]

42.

Oliner JD, Pietenpol JA, Thiagalingam S. et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993;362:857–860. [PubMed: 8479525]

43.

Haupt Y, Barak Y, Oren M. Cell type-specific inhibition of p53-mediated apoptosis by mdm2. EMBO J. 1996;15:1596–1606. [PMC free article: PMC450069] [PubMed: 8612583]

44.

Unger T, Juven-Gershon T, Moallem E. et al. Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J. 1999;18:1805–1814. [PMC free article: PMC1171266] [PubMed: 10202144]

45.

Jackson MW, Berberich SJ. MdmX protects p53 from Mdm2-mediated degradation. Mol Cell Biol. 2000;20:1001–1007. [PMC free article: PMC85217] [PubMed: 10629057]

46.

Stad R, Ramos YF, Little N. et al. Hdmx stabilizes Mdm2 and p53. J Biol Chem. 2000;275:28039–28044. [PubMed: 10827196]

47.

Yap D B S, Hsieh J -K, Lu X. Mdm2 inhibits the apoptotic function of p53 mainly by targeting it for degradation. J Biol Chem. 2000;275:37296–37302. [PubMed: 10980197]

48.

Blaydes JP, Wynford-Thomas D. The proliferation of normal human fibroblasts is dependent upon negative regulation of p53 function by mdm2. Oncogene. 1998;16:3317–3322. [PubMed: 9681831]

49.

Böttger A, Böttger V, Sparks A. et al. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr Biol. 1997;7:860–869. [PubMed: 9382809]

50.

Chen L, Lu W, Agrawal S. et al. Ubiquitous induction of p53 in tumor cells by antisense inhibition of MDM2 expression. Mol Med. 1999;5:21–34. [PMC free article: PMC2230374] [PubMed: 10072445]

51.

Wasylyk C, Salvi R, Argentini M. et al. p53 mediated death of cells overexpressing MDM2 by an inhibitor of MDM2 interaction with p53. Oncogene. 1999;18:1921–1934. [PubMed: 10208414]

52.

Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci U S A. 1999;96:13777–13782. [PMC free article: PMC24141] [PubMed: 10570149]

53.

Shieh S -Y, Taya Y, Prives C. DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J. 1999;18:1815–1823. [PMC free article: PMC1171267] [PubMed: 10202145]

54.

Chehab NH, Malikzay A, Appel M, Halazonetis TD. Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev. 2000;14:278–288. [PMC free article: PMC316357] [PubMed: 10673500]

55.

Hirao A, Kong YY, Matsuoka S. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science. 2000;287:1824–1827. [PubMed: 10710310]

56.

Böttger V, Böttger A, Garcia Echeverria C. et al. Comparative study of the p53-mdm2 and p53-MDMX interfaces. Oncogene. 1999;18:189–199. [PubMed: 9926934]

57.

Sakaguchi K, Saito S, Higashimoto Y. et al. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J Biol Chem. 2000;275:9278–9283. [PubMed: 10734067]

58.

Dumaz N, Meek DW. Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J. 1999;18:7002–7010. [PMC free article: PMC1171763] [PubMed: 10601022]

59.

Gostissa M, Hengstermann A, Fogal V. et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J. 1999;18:6462–6471. [PMC free article: PMC1171709] [PubMed: 10562558]

60.

Müller S, Berger M, Lehembre F. et al. c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem. 2000;275:13321–13329. [PubMed: 10788439]

61.

Rodriguez MS, Desterro JM, Lain S. et al. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 1999;18:6455–6461. [PMC free article: PMC1171708] [PubMed: 10562557]

62.

Buschmann T, Fuchs SY, Lee CG. et al. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell. 2000;101:753–762. [PubMed: 10892746]

63.

Khosravi R, Maya R, Gottlieb T. et al. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci U S A. 1999;96:14973–14977. [PMC free article: PMC24757] [PubMed: 10611322]

64.

Mayo LD, Turchi JJ, Berberich SJ. Mdm-2 phosphorylation by DNA-dependent protein kinase prevents interaction with p53. Cancer Res. 1997;57:5013–5016. [PubMed: 9371494]

65.

Artandi SE, DePinho RA. Mice without telomerase: what can they teach us about human cancer? Nat Med. 2000;6:852–855. [PubMed: 10932211]

66.

Serrano M. The INK4a/ARF locus in murine tumorigenesis. Carcinogenesis. 2000;21:865–869. [PubMed: 10783305]

67.

Kamijo T, Bodner S, van de Kamp E. et al. Tumor spectrum in ARF-deficient mice. Cancer Res. 1999;59:2217–2222. [PubMed: 10232611]

68.

Bringold F, Serrano M. Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol. 2000;35:317–329. [PubMed: 10832053]

69.

Robertson KD, Jones PA. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol Cell Biol. 1998;18:6457–6473. [PMC free article: PMC109232] [PubMed: 9774662]

70.

Bates S, Phillips AC, Clark PA. et al. p14ARF links the tumour suppressors RB and p53. Nature. 1998;395:124–125. [PubMed: 9744267]

71.

Stott FJ, Bates S, James MC. et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 1998;17:5001–5014. [PMC free article: PMC1170828] [PubMed: 9724636]

72.

Honda R, Yasuda H. Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 1999;18:22–27. [PMC free article: PMC1171098] [PubMed: 9878046]

73.

Pomerantz J, Schreiber Agus N, Liegeois NJ. et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell. 1998;92:713–723. [PubMed: 9529248]

74.

Tao W, Levine AJ. p19ARF stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci U S A. 1999;96:6937–6941. [PMC free article: PMC22020] [PubMed: 10359817]

75.

Weber JD, Taylor LJ, Roussel MF. et al. Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol. 1999;1:20–26. [PubMed: 10559859]

76.

Zhang Y, Xiong Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol Cell. 1999;3:579–591. [PubMed: 10360174]

77.

Rizos H, Darmanian AP, Mann GJ, Kefford RF. Two arginine rich domains in the p14ARF tumour suppressor mediate nucleolar localization. Oncogene. 2000;19:2978–2985. [PubMed: 10871849]

78.

Weber JD, Kuo ML, Bothner B. et al. Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol Cell Biol. 2000;20:2517–2528. [PMC free article: PMC85460] [PubMed: 10713175]

79.

Lohrum MA, Ashcroft M, Kubbutat MH, Vousden KH. Identification of a cryptic nucleolar-localization signal in MDM2. Nat Cell Biol. 2000;2:179–181. [PubMed: 10707090]

80.

Shaul Y. c-Abl: activation and nuclear targets. Cell Death Differ. 2000;7:10–16. [PubMed: 10713716]

81.

Van Etten RA. Cycling, stressed-out and nervous: cellular functions of c-Abl. Trends Cell Biol. 1999;9:179–186. [PubMed: 10322452]

82.

Schwartzberg PL, Stall AM, Hardin JD. et al. Mice hom*ozygous for the ablm1 mutation show poor viability and depletion of selected B and T cell populations. Cell. 1991;65:1165–1175. [PubMed: 2065353]

83.

Tybulewicz VL, Crawford CE, Jackson PK. et al. Neonatal lethality and lymphopenia in mice with a hom*ozygous disruption of the c-abl proto-oncogene. Cell. 1991;65:1153–1163. [PubMed: 2065352]

84.

Whang YE, Tran C, Henderson C. et al. c-Abl is required for development and optimal cell proliferation in the context of p53 deficiency. Proc Natl Acad Sci U S A. 2000;97:5486–5491. [PMC free article: PMC25855] [PubMed: 10805805]

85.

Kharbanda S, Yuan ZM, Weichselbaum R, Kufe D. Determination of cell fate by c-Abl activation in the response to DNA damage. Oncogene. 1998;17:3309–3318. [PubMed: 9916993]

86.

Nie Y, Li HH, Bula CM, Liu X. Stimulation of p53 DNA binding by c-Abl requires the p53 C-terminus and tetramerization. Mol Cell Biol. 2000;20:741–748. [PMC free article: PMC85189] [PubMed: 10629029]

87.

Vogt Sionov R, Moallem E, Berger M. et al. c-Abl neutralizes the inhibitory effect of Mdm2 on p53. J Biol Chem. 1999;274:8371–8374. [PubMed: 10085066]

88.

Hsieh JK, Chan FS, O'Connor DJ. et al. RB regulates the stability and the apoptotic function of p53 via MDM2. Mol Cell. 1999;3:181–193. [PubMed: 10078201]

89.

Damalas A, Ben Ze'ev A, Simcha I. et al. Excess beta-catenin promotes accumulation of transcriptionally active p53. EMBO J. 1999;18:3054–3063. [PMC free article: PMC1171387] [PubMed: 10357817]

90.

Kim IS, Kim DH, Han SM. et al. Truncated form of importin alpha identified in breast cancer cell inhibits nuclear import of p53. J Biol Chem. 2000;275:23139–23145. [PubMed: 10930427]

91.

Moll UM, Ostermeyer AG, Haladay R. et al. Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol Cell Biol. 1996;16:1126–1137. [PMC free article: PMC231095] [PubMed: 8622657]

92.

Momand J, Jung D, Wilczynski S, Niland J. The MDM2 gene amplification database. Nucleic Acids Res. 1998;26:3453–3459. [PMC free article: PMC147746] [PubMed: 9671804]

93.

Lu W, Pochampally R, Chen L. et al. Nuclear exclusion of p53 in a subset of tumors requires MDM2 function. Oncogene. 2000;19:232–240. [PubMed: 10645001]

94.

Thomas M, Pim D, Banks L. The role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene. 1999;18:7690–7700. [PubMed: 10618709]

95.

Elmore LW, Hanco*ck AR, Chang SF. et al. Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proc Natl Acad Sci U S A. 1997;94:14707–14712. [PMC free article: PMC25100] [PubMed: 9405677]

96.

Konig C, Roth J, Dobbelstein M. Adenovirus type 5 E4orf3 protein relieves p53 inhibition by E1B-55-kilodalton protein. J Virol. 1999;73:2253–2262. [PMC free article: PMC104470] [PubMed: 9971808]

97.

Wienzek S, Roth J, Dobbelstein M. E1B 55-kilodalton oncoproteins of adenovirus types 5 and 12 inactivate and relocalize p53, but not p51 or p73, and cooperate with E4orf6 proteins to destabilize p53. J Virol. 2000;74:193–202. [PMC free article: PMC111528] [PubMed: 10590106]

98.

Komarova EA, Zelnick CR, Chin D. et al. Intracellular localization of p53 tumor suppressor protein in gamma-irradiated cells is cell cycle regulated and determined by the nucleus. Cancer Res. 1997;57:5217–5220. [PubMed: 9393737]

99.

Shaulsky G, Ben Ze'ev A, Rotter V. Subcellular distribution of the p53 protein during the cell cycle of Balb/c 3T3 cells. Oncogene. 1990;5:1707–1711. [PubMed: 2267137]

100.

Liang SH, Clarke MF. A bipartite nuclear localization signal is required for p53 nuclear import regulated by a carboxyl-terminal domain. J Biol Chem. 1999;274:32699–32703. [PubMed: 10551826]

101.

Liang SH, Clarke MF. The nuclear import of p53 is determined by the presence of a basic domain and its relative position to the nuclear localization signal. Oncogene. 1999;18:2163–2166. [PubMed: 10321742]

102.

Klotzsche O, Etzrodt D, Hohenberg H. et al. Cytoplasmic retention of mutant tsp53 is dependent on an intermediate filament protein (vimentin) scaffold. Oncogene. 1998;16:3423–3434. [PubMed: 9692550]

103.

Giannakakou P, Sackett DL, Ward Y. et al. p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat Cell Biol. 2000;2:709–717. [PubMed: 11025661]

104.

Freedman DA, Levine AJ. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol. 1998;18:7288–7293. [PMC free article: PMC109310] [PubMed: 9819415]

105.

Roth J, Dobbelstein M, Freedman DA. et al. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 1998;17:554–564. [PMC free article: PMC1170405] [PubMed: 9430646]

106.

Lain S, Midgley C, Sparks A. et al. An inhibitor of nuclear export activates the p53 response and induces the localization of HDM2 and p53 to U1A-positive nuclear bodies associated with the PODs. Exp Cell Res. 1999;248:457–472. [PubMed: 10222137]

107.

Kudo N, Matsumori N, Taoka H. et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci U S A. 1999;96:9112–9117. [PMC free article: PMC17741] [PubMed: 10430904]

108.

Henderson BR, Eleftheriou A. A comparison of the activity, sequence specificity, and CRM1-dependence of different nuclear export signals. Exp Cell Res. 2000;256:213–224. [PubMed: 10739668]

109.

Stommel JM, Marchenko ND, Jimenez GS. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 1999;18:1660–1672. [PMC free article: PMC1171253] [PubMed: 10075936]

110.

Marston NJ, Jenkins JR, Vousden KH. Oligomerisation of full length p53 contributes to the interaction with mdm2 but not HPV E6. Oncogene. 1995;10:1709–1715. [PubMed: 7753547]

111.

Boyd SC, Tsai KY, Jacks T. An intact Hdm2 RING-finger domain is required for nuclear exclusion of p53. Nat Cell Biol. 2000;2:563–568. [PubMed: 10980695]

112.

Geyer RK, Yu ZK, Maki CG. The Mdm2 RING-finger domain is required to promote p53 nuclear export. Nat Cell Biol. 2000;2:569–573. [PubMed: 10980696]

113.

Fogal V, Gostissa M, Sandy P. et al. Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J. 2000;19:6185–6195. [PMC free article: PMC305840] [PubMed: 11080164]

114.

Guo A, Salomoni P, Luo J. et al. The function of PML in p53-dependent apoptosis. Nat Cell Biol. 2000;2:730–736. [PubMed: 11025664]

115.

Matera AG. Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol. 1999;9:302–309. [PubMed: 10407409]

116.

Seeler JS, Dejean A. The PML nuclear bodies: actors or extras? Curr Opin Genet Dev. 1999;9:362–367. [PubMed: 10377280]

117.

Wang ZG, Ruggero D, Ronchetti S. et al. PML is essential for multiple apoptotic pathways. Nat Genet. 1998;20:266–272. [PubMed: 9806545]

118.

Pearson M, Carbone R, Sebastiani C. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature. 2000;406:207–210. [PubMed: 10910364]

119.

Agarwal ML, Agarwal A, Taylor WR. et al. A p53-dependent S-phase checkpoint helps to protect cells from DNA damage in response to starvation for pyrimidine nucleotides. Proc Natl Acad Sci U S A. 1998;95:14775–14780. [PMC free article: PMC24525] [PubMed: 9843965]

120.

Meek DW. The role of p53 in the response to mitotic spindle damage. Pathol Biol. 2000;48:246–254. [PubMed: 10858957]

121.

Kastan MB, Zhan Q, el Deiry WS. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992;71:587–597. [PubMed: 1423616]

122.

Bunz F, Dutriaux A, Lengauer C. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998;282:1497–1501. [PubMed: 9822382]

123.

Brehm A, Miska EA, McCance DJ. et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 1998;391:597–601. [PubMed: 9468139]

124.

Deng C, Zhang P, Harper JW. et al. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell. 1995;82:675–684. [PubMed: 7664346]

125.

Schneider E, Montenarh M, Wagner P. Regulation of CAK kinase activity by p53. Oncogene. 1998;17:2733–2741. [PubMed: 9840937]

126.

Ko LJ, Shieh SY, Chen X. et al. p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner. Mol Cell Biol. 1997;17:7220–7229. [PMC free article: PMC232579] [PubMed: 9372954]

127.

Guardavaccaro D, Corrente G, Covone F. et al. Arrest of G1-S progression by the p53-inducible gene PC3 is Rb dependent and relies on the inhibition of cyclin D1 transcription. Mol Cell Biol. 2000;20:1797–1815. [PMC free article: PMC85361] [PubMed: 10669755]

128.

Flatt PM, Tang LJ, Scatena CD. et al. p53 regulation of G2 checkpoint is retinoblastoma protein dependent. Mol Cell Biol. 2000;20:4210–4223. [PMC free article: PMC85790] [PubMed: 10825186]

129.

Jin S, Antinore MJ, Lung FD. et al. The GADD45 inhibition of Cdc2 kinase correlates with GADD45-mediated growth suppression. J Biol Chem. 2000;275:16602–16608. [PubMed: 10747892]

130.

Zhan Q, Antinore MJ, Wang XW. et al. Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene. 1999;18:2892–2900. [PubMed: 10362260]

131.

Hollander MC, Sheikh MS, Bulavin DV. et al. Genomic instability in Gadd45a-deficient mice. Nat Genet. 1999;23:176–184. [PubMed: 10508513]

132.

Hermeking H, Lengauer C, Polyak K. et al. 14-3-3–σ is a p53-regulated inhibitor of G2/M progression. Mol Cell. 1997;1:3–11. [PubMed: 9659898]

133.

Peng CY, Graves PR, Thomas RS. et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science. 1997;277:1501–1505. [PubMed: 9278512]

134.

Ferrell J E Jr. How regulated protein translocation can produce switch-like responses. Trends Biochem Sci. 1998;23:461–465. [PubMed: 9868363]

135.

Chan TA, Hermeking H, Lengauer C. et al. 14-3-3–σ is required to prevent mitotic catastrophe after DNA damage. Nature. 1999;401:616–620. [PubMed: 10524633]

136.

Innocente SA, Abrahamson JL, Cogswell JP, Lee JM. p53 regulates a G2 checkpoint through cyclin B1. Proc Natl Acad Sci U S A. 1999;96:2147–2152. [PMC free article: PMC26751] [PubMed: 10051609]

137.

Park M, Chae HD, Yun J. et al. Constitutive activation of cyclin B1-associated cdc2 kinase overrides p53-mediated G2-M arrest. Cancer Res. 2000;60:542–545. [PubMed: 10676633]

138.

Taylor WR, DePrimo SE, Agarwal A. et al. Mechanisms of G2 arrest in response to overexpression of p53. Mol Biol. Cell. 1999;10:3607–3622. [PMC free article: PMC25646] [PubMed: 10564259]

139.

Chan TA, Hwang PM, Hermeking H. et al. Cooperative effects of genes controlling the G2/M checkpoint. Genes Dev. 2000;14:1584–1588. [PMC free article: PMC316737] [PubMed: 10887152]

140.

Tarapore P, f*ckasawa K. p53 mutation and mitotic infidelity. Cancer Invest. 2000;18:148–155. [PubMed: 10705877]

141.

Yin XY, Grove L, Datta NS. et al. c-Myc overexpression and p53 loss cooperate to promote genomic instability. Oncogene. 1999;18:1177–1184. [PubMed: 10022123]

142.

Sablina AA, Agapova LS, Chumakov PM, Kopnin BP. p53 does not control the spindle assembly cell cycle checkpoint but mediates G1 arrest in response to disruption of microtubule system. Cell Biol Int. 1999;23:323–334. [PubMed: 10579898]

143.

Stewart ZA, Leach SD, Pietenpol JA. p21Waf1/Cip1 inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption. Mol Cell Biol. 1999;19:205–215. [PMC free article: PMC83879] [PubMed: 9858545]

144.

Lacey KR, Jackson PK, Stearns T. Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci U S A. 1999;96:2817–2822. [PMC free article: PMC15852] [PubMed: 10077594]

145.

Mussman JG, Horn HF, Carroll PE. et al. Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene. 2000;19:1635–1646. [PubMed: 10763820]

146.

Khan SH, Wahl GM. p53 and pRb prevent rereplication in response to microtubule inhibitors by mediating a reversible G1 arrest. Cancer Res. 1998;58:396–401. [PubMed: 9458079]

147.

Lanni JS, Jacks T. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol. 1998;18:1055–1064. [PMC free article: PMC108818] [PubMed: 9448003]

148.

Mantel C, Braun SE, Reid S. et al. p21cip-1/waf-1 deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood. 1999;93:1390–1398. [PubMed: 9949183]

149.

Hsu LC, White RL. BRCA1 is associated with the centrosome during mitosis. Proc Natl Acad Sci U S A. 1998;95:12983–12988. [PMC free article: PMC23679] [PubMed: 9789027]

150.

Deng CX, Brodie SG. Roles of BRCA1 and its interacting proteins. Bioessays. 2000;22:728–737. [PubMed: 10918303]

151.

Scully R, Livingston DM. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature. 2000;408:429–432. [PMC free article: PMC2981135] [PubMed: 11100717]

152.

Xu X, Weaver Z, Linke SP. et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell. 1999;3:389–395. [PubMed: 10198641]

153.

Yap DB, Hsieh JK, Chan FS, Lu X. mdm2: a bridge over the two tumour suppressors, p53 and Rb. Oncogene. 1999;18:7681–7689. [PubMed: 10618708]

154.

Johnson TM, Yu ZX, Ferrans VJ. et al. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci U S A. 1996;93:11848–11852. [PMC free article: PMC38147] [PubMed: 8876226]

155.

Li PF, Dietz R, von Harsdorf R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J. 1999;18:6027–6036. [PMC free article: PMC1171668] [PubMed: 10545114]

156.

Rich T, Allen RL, Wyllie AH. Defying death after DNA damage. Nature. 2000;407:777–783. [PubMed: 11048728]

157.

Soengas MS, Alarcon RM, Yoshida H. et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science. 1999;284:156–159. [PubMed: 10102818]

158.

May P, May E. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene. 1999;18:7621–7636. [PubMed: 10618702]

159.

Allan LA, Fried M. p53-dependent apoptosis or growth arrest induced by different forms of radiation in U2OS cells: p21WAF1/CIP1 repression in UV induced apoptosis. Oncogene. 1999;18:5403–5412. [PubMed: 10498894]

160.

Blaydes JP, Craig AL, Wallace M. et al. Synergistic activation of p53-dependent transcription by two cooperating damage recognition pathways. Oncogene. 2000;19:3829–3839. [PubMed: 10951576]

161.

Lu X, Lane DP. Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell. 1993;75:765–778. [PubMed: 8242748]

162.

Buschmann T, Adler V, Matusevich E. et al. p53 phosphorylation and association with murine double minute 2, c-Jun NH2-terminal kinase, p14ARF, and p300/CBP during the cell cycle and after exposure to ultraviolet irradiation. Cancer Res. 2000;60:896–900. [PubMed: 10706102]

163.

Blaydes JP, Hupp TR. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene. 1998;17:1045–1052. [PubMed: 9747884]

164.

Kapoor M, Lozano G. Functional activation of p53 via phosphorylation following DNA damage by UV but not _radiation. Proc Natl Acad Sci USA. 1998;95:2834–2837. [PMC free article: PMC19655] [PubMed: 9501176]

165.

Lu H, Taya Y, Ikeda M, Levine AJ. Ultraviolet radiation, but not _ radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein at serine-389. Proc Natl Acad Sci USA. 1998;95:6399–6402. [PMC free article: PMC27741] [PubMed: 9600977]

166.

Sakaguchi K, Herrera JE, Saito S. et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 1998;12:2831–2841. [PMC free article: PMC317174] [PubMed: 9744860]

167.

Oda K, Arakawa H, Tanaka T. et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 2000;102:849–862. [PubMed: 11030628]

168.

Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91:325–334. [PubMed: 9363941]

169.

Siliciano JD, Canman CE, Taya Y. et al. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 1997;11:3471–3481. [PMC free article: PMC316806] [PubMed: 9407038]

170.

Tibbetts RS, Brumbaugh KM, Williams JM. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 1999;13:152–157. [PMC free article: PMC316393] [PubMed: 9925639]

171.

Albrechtsen N, Dornreiter I, Grosse F. et al. Maintenance of genomic integrity by p53: complementary roles for activated and nonactivated p53. Oncogene. 1999;18:7706–7717. [PubMed: 10618711]

172.

Flaman JM, Robert V, Lenglet S. et al. Identification of human p53 mutations with differential effects on the bax and p21 promoters using functional assays in yeast. Oncogene. 1998;16:1369–1372. [PubMed: 9546439]

173.

Thukral SK, Lu Y, Blain GC. et al. Discrimination of DNA binding sites by mutant p53 proteins. Mol Cell. Biol. 1995;15:5196–5202. [PMC free article: PMC230767] [PubMed: 7651437]

174.

Kim E, Albrechtsen N, Deppert W. DNA-conformation is an important determinant of sequence-specific DNA binding by tumor suppressor p53. Oncogene. 1997;15:857–869. [PubMed: 9266973]

175.

Thornborrow EC, Manfredi JJ. One mechanism for cell type-specific regulation of the bax promoter by the tumor suppressor p53 is dictated by the p53 response element. J Biol Chem. 1999;274:33747–33756. [PubMed: 10559267]

176.

Friedlander P, Haupt Y, Prives C, Oren M. A mutant p53 that discriminates between p53-responsive genes cannot induce apoptosis. Mol Cell Biol. 1996;16:4961–4971. [PMC free article: PMC231498] [PubMed: 8756655]

177.

Ludwig RL, Bates S, Vousden KH. Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol Cell Biol. 1996;16:4952–4960. [PMC free article: PMC231497] [PubMed: 8756654]

178.

Ryan KM, Vousden KH. Characterization of structural p53 mutants which show selective defects in apoptosis but not cell cycle arrest. Mol Cell Biol. 1998;18:3692–3698. [PMC free article: PMC108951] [PubMed: 9632751]

179.

Roth J, Koch P, Contente A, Dobbelstein M. Tumor-derived mutations within the DNA-binding domain of p53 that phenotypically resemble the deletion of the proline-rich domain. Oncogene. 2000;19:1834–1842. [PubMed: 10777217]

180.

Saller E, Tom E, Brunori M. et al. Increased apoptosis induction by 121F mutant p53. EMBO J. 1999;18:4424–4437. [PMC free article: PMC1171517] [PubMed: 10449408]

181.

Zhu J, Jiang J, Zhou W. et al. Differential regulation of cellular target genes by p53 devoid of the PXXP motifs with impaired apoptotic activity. Oncogene. 1999;18:2149–2155. [PubMed: 10321740]

182.

Relaix F, Wei X, Li W. et al. Pw1/Peg3 is a potential cell death mediator and cooperates with Siah1a in p53-mediated apoptosis. Proc Natl Acad Sci U S A. 2000;97:2105–2110. [PMC free article: PMC15761] [PubMed: 10681424]

183.

Wu GS, Burns TF, McDonald ER. et al. Induction of the TRAIL receptor KILLER/DR5 in p53-dependent apoptosis but not growth arrest. Oncogene. 1999;18:6411–6418. [PubMed: 10597242]

184.

Zhu Q, Wani MA, El Mahdy M. et al. Modulation of transcriptional activity of p53 by ultraviolet radiation: linkage between p53 pathway and DNA repair through damage recognition. Mol Carcinog. 2000;28:215–224. [PubMed: 10972991]

185.

Amundson SA, Myers TG, Fornace A J Jr. Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. Oncogene. 1998;17:3287–3299. [PubMed: 9916991]

186.

Perry ME, Mendrysa SM, Saucedo LJ. et al. p76MDM2 inhibits the ability of p90MDM2 to destabilize p53. J Biol Chem. 2000;275:5733–5738. [PubMed: 10681559]

187.

Saucedo LJ, Myers CD, Perry ME. Multiple murine double minute gene 2 (MDM2) proteins are induced by ultraviolet light. J Biol Chem. 1999;274:8161–8168. [PubMed: 10075719]

188.

Ljungman M, Zhang F. Blockage of RNA polymerase as a possible trigger for u.v. light-induced apoptosis. Oncogene. 1996;13:823–831. [PubMed: 8761304]

189.

Dumaz N, Duthu A, Ehrhart JC. et al. Prolonged p53 protein accumulation in trichothiodystrophy fibroblasts dependent on unrepaired pyrimidine dimers on the transcribed strands of cellular genes. Mol Carcinog. 1997;20:340–347. [PubMed: 9433478]

190.

McKay BC, Ljungman M, Rainbow AJ. Persistent DNA damage induced by ultraviolet light inhibits p21waf1 and bax expression: implications for DNA repair, UV sensitivity and the induction of apoptosis. Oncogene. 1998;17:545–555. [PubMed: 9704920]

191.

Chen X, Ko LJ, Jayaraman L, Prives C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 1996;10:2438–2451. [PubMed: 8843196]

192.

Wu X, Levine AJ. p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci U S A. 1994;91:3602–3606. [PMC free article: PMC43628] [PubMed: 8170954]

193.

Irwin M, Marin MC, Phillips AC. et al. Role for the p53 hom*ologue p73 in E2F-1-induced apoptosis. Nature. 2000;407:645–648. [PubMed: 11034215]

194.

Thomas A, White E. Suppression of the p300-dependent mdm2 negative-feedback loop induces the p53 apoptotic function. Genes Dev. 1998;12:1975–1985. [PMC free article: PMC316960] [PubMed: 9649502]

195.

Ries S, Biederer C, Woods D. et al. Opposing effects of Ras on p53: Transcriptional activation of mdm2 and induction of p19ARF. Cell. 2000;103:321–330. [PubMed: 11057904]

196.

Allan LA, Duhig T, Read M, Fried M. The p21WAF1/CIP1 promoter is methylated in Rat-1 cells: stable restoration of p53-dependent p21WAF1/CIP1 expression after transfection of a genomic clone containing the p21WAF1/CIP1 gene. Mol Cell Biol. 2000;20:1291–1298. [PMC free article: PMC85267] [PubMed: 10648615]

197.

Gervais JL, Seth P, Zhang H. Cleavage of CDK inhibitor p21Cip1/Waf1 by caspases is an early event during DNA damage-induced apoptosis. J Biol Chem. 1998;273:19207–19212. [PubMed: 9668108]

198.

Gorospe M, Cirielli C, Wang X. et al. p21Waf1/Cip1 protects against p53-mediated apoptosis of human melanoma cells. Oncogene. 1997;14:929–935. [PubMed: 9050992]

199.

Polyak K, Waldman T, He TC. et al. Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev. 1996;10:1945–1952. [PubMed: 8756351]

200.

Waldman T, Zhang Y, Dillehay L. et al. Cell-cycle arrest versus cell death in cancer therapy. Nat Med. 1997;3:1034–1036. [PubMed: 9288734]

201.

Bissonnette N, Hunting DJ. p21-induced cycle arrest in G1 protects cells from apoptosis induced by UV-irradiation or RNA polymerase II blockage. Oncogene. 1998;16:3461–3469. [PubMed: 9692554]

202.

Haupt Y, Rowan S, Oren M. p53-mediated apoptosis in HeLa cells can be overcome by excess pRB. Oncogene. 1995;10:1563–1571. [PubMed: 7731711]

203.

Tanaka H, Arakawa H, Yamaguchi T. et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature. 2000;404:42–49. [PubMed: 10716435]

204.

Asada M, Yamada T, Ichijo H. et al. Apoptosis inhibitory activity of cytoplasmic p21Cip1/WAF1 in monocytic differentiation. EMBO J. 1999;18:1223–1234. [PMC free article: PMC1171213] [PubMed: 10064589]

205.

Zha J, Harada H, Yang E. et al. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XL. Cell. 1996;87:619–628. [PubMed: 8929531]

206.

Leri A, Liu Y, Claudio PP. et al. Insulin-like growth factor-1 induces Mdm2 and down-regulates p53, attenuating the myocyte renin-angiotensin system and stretch-mediated apoptosis. Am J Pathol. 1999;154:567–580. [PMC free article: PMC1850006] [PubMed: 10027414]

207.

Qi JS, Yuan Y, Desai Yajnik V, Samuels HH. Regulation of the mdm2 oncogene by thyroid hormone receptor. Mol Cell Biol. 1999;19:864–872. [PMC free article: PMC83943] [PubMed: 9858609]

208.

Shaulian E, Resnitzky D, Shifman O. et al. Induction of Mdm2 and enhancement of cell survival by bFGF. Oncogene. 1997;15:2717–2725. [PubMed: 9400998]

209.

Banin S, Moyal L, Shieh S. et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281:1674–1677. [PubMed: 9733514]

210.

Canman CE, Lim DS, Cimprich KA. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281:1677–1679. [PubMed: 9733515]

211.

Shieh SY, Ahn J, Tamai K. et al. The human hom*ologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 2000;14:289–300. [PMC free article: PMC316358] [PubMed: 10673501]

212.

Fuchs SY, Adler V, Pincus MR, Ronai Z. MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci U S A. 1998;95:10541–10546. [PMC free article: PMC27930] [PubMed: 9724739]

213.

Lu H, Fisher RP, Bailey P, Levine AJ. The CDK7-cycH-p36 complex of transcription factor IIH phosphorylates p53,enhancing its sequence-specific DNA binding activity in vitro. Mol Cell Biol. 1997;17:5923–5934. [PMC free article: PMC232440] [PubMed: 9315650]

214.

Bulavin DV, Saito S, Hollander MC. et al. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 1999;18:6845–6854. [PMC free article: PMC1171747] [PubMed: 10581258]

215.

Sanchez Prieto R, Rojas JM, Taya Y, Gutkind JS. A role for the p38 mitogen-acitvated protein kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents. Cancer Res. 2000;60:2464–2472. [PubMed: 10811125]

216.

She QB, Chen N, Dong Z. ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem. 2000;275:20444–20449. [PubMed: 10781582]

217.

Sayed M, Kim SO, Salh BS. et al. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. J Biol Chem. 2000;275:16569–16573. [PubMed: 10747897]

218.

Cuddihy AR, Wong AH, Tam NW. et al. The double-stranded-RNA-activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates p53 on serine 392 in vitro. Oncogene. 1999;18:2690–2072. [PubMed: 10348343]

219.

Luciani MG, Hutchins JR, Zheleva D, Hupp TR. The C-terminal regulatory domain of p53 contains a functional docking site for cyclin A. J Mol Biol. 2000;300:503–518. [PubMed: 10884347]

220.

Wang Y, Prives C. Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature. 1995;376:88–91. [PubMed: 7596441]

221.

Waterman MJ, Stavridi ES, Waterman JL, Halazonetis TD. ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet. 1998;19:175–178. [PubMed: 9620776]

222.

Li L, Ljungman M, Dixon JE. The human Cdc14 phosphatases interact with and dephosphorylate the tumor suppressor protein p53. J Biol Chem. 2000;275:2410–2414. [PubMed: 10644693]

223.

Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595–606. [PubMed: 9288740]

224.

Kumari SR, Mendoza Alvarez H, Alvarez Gonzalez R. Functional interactions of p53 with poly(ADP-ribose) polymerase (PARP) during apoptosis following DNA damage:covalent poly(ADP-ribosyl)ation of p53 by exogenous PARP and noncovalent binding of p53 to the M(r) 85,000 proteolytic fragment. Cancer Res. 1998;58:5075–5078. [PubMed: 9823314]

225.

Wang X, Ohnishi K, Takahashi A, Ohnishi T. Poly(ADP-ribosyl)ation is required for p53-dependent signal transduction induced by radiation. Oncogene. 1998;17:2819–2825. [PubMed: 9879988]

The Regulation of p53 Growth Suppression (2024)
Top Articles
How to Know When to Sell Crypto - 1883 Magazine
Walmart issues cautious 2023 guidance as inflation persists
Funny Roblox Id Codes 2023
Matgyn
It's Official: Sabrina Carpenter's Bangs Are Taking Over TikTok
Obor Guide Osrs
Body Rubs Austin Texas
DENVER Überwachungskamera IOC-221, IP, WLAN, außen | 580950
Nm Remote Access
Newgate Honda
Morocco Forum Tripadvisor
Bestellung Ahrefs
Oro probablemente a duna Playa e nomber Oranjestad un 200 aña pasa, pero Playa su historia ta bay hopi mas aña atras
Rainfall Map Oklahoma
Craigslist Free Stuff Greensboro Nc
Puretalkusa.com/Amac
Craigslist Red Wing Mn
Aspen Mobile Login Help
H12 Weidian
Curry Ford Accident Today
Theater X Orange Heights Florida
Gazette Obituary Colorado Springs
11 Ways to Sell a Car on Craigslist - wikiHow
Reviews over Supersaver - Opiness - Spreekt uit ervaring
Horn Rank
Leben in Japan – das muss man wissen - Lernen Sie Sprachen online bei italki
Movies - EPIC Theatres
Login.castlebranch.com
Www.1Tamilmv.con
Little Einsteins Transcript
Amici Pizza Los Alamitos
Tenant Vs. Occupant: Is There Really A Difference Between Them?
Are you ready for some football? Zag Alum Justin Lange Forges Career in NFL
Babylon 2022 Showtimes Near Cinemark Downey And Xd
The Thing About ‘Dateline’
Express Employment Sign In
Flipper Zero Delivery Time
Seminary.churchofjesuschrist.org
Kb Home The Overlook At Medio Creek
Powerboat P1 Unveils 2024 P1 Offshore And Class 1 Race Calendar
Shell Gas Stations Prices
Dickdrainersx Jessica Marie
Patricia And Aaron Toro
Avatar: The Way Of Water Showtimes Near Jasper 8 Theatres
Senior Houses For Sale Near Me
Stitch And Angel Tattoo Black And White
Muni Metro Schedule
Used Auto Parts in Houston 77013 | LKQ Pick Your Part
Gear Bicycle Sales Butler Pa
Publix Store 840
Ingersoll Greenwood Funeral Home Obituaries
Provincial Freeman (Toronto and Chatham, ON: Mary Ann Shadd Cary (October 9, 1823 – June 5, 1893)), November 3, 1855, p. 1
Latest Posts
Article information

Author: Jeremiah Abshire

Last Updated:

Views: 6009

Rating: 4.3 / 5 (54 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Jeremiah Abshire

Birthday: 1993-09-14

Address: Apt. 425 92748 Jannie Centers, Port Nikitaville, VT 82110

Phone: +8096210939894

Job: Lead Healthcare Manager

Hobby: Watching movies, Watching movies, Knapping, LARPing, Coffee roasting, Lacemaking, Gaming

Introduction: My name is Jeremiah Abshire, I am a outstanding, kind, clever, hilarious, curious, hilarious, outstanding person who loves writing and wants to share my knowledge and understanding with you.