The MiTF/TFE Family of Transcription Factors: Master Regulators of Organelle Signaling, Metabolism, and Stress Adaptation (2024)

Skip Nav Destination

Article navigation

1 December 2017

The MiTF/TFE Family of Transcription Factors: Master Regulators of Organelle Signaling, Metabolism, and Stress Adaptation (1)

  • Abstract

  • Introduction

  • Role of TFEB and TFE3 as Oncogenes

  • Upstream Regulators Modifying Oncogenic Outcomes of MiT/TFEs: Role of Lysosomal Signaling and Wnt/β-Catenin Pathways

  • Conclusion and Future Role of MiT/TFEs Biology in Health and Disease

  • Disclosure of Potential Conflicts of Interest

  • Grant Support

  • References

Review| November 30 2017

Logan Slade;

Logan Slade

Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, New Brunswick, Canada.

Search for other works by this author on:

Thomas Pulinilkunnil

Thomas Pulinilkunnil *

Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, New Brunswick, Canada.

*Corresponding Author: Thomas Pulinilkunnil, Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John, New Brunswick E2L4L5, Canada. Phone: 1-506-636-6973; Fax: 1-506-636-6001; E-mail: [email protected]

Search for other works by this author on:

Author & Article Information

*Corresponding Author: Thomas Pulinilkunnil, Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John, New Brunswick E2L4L5, Canada. Phone: 1-506-636-6973; Fax: 1-506-636-6001; E-mail: [email protected]

Received: June 22 2017

Revision Received: August 08 2017

Accepted: August 24 2017

Online ISSN: 1557-3125

Print ISSN: 1541-7786

Funding

Funding Group:

  • Award Group:

    • Funder(s):

      Natural Sciences and Engineering Research Council of Canada

    • Award Id(s):

      RGPIN-2014-03687

  • Award Group:

    • Funder(s):

      Beatrice Hunter Cancer Research Institute seed funding

    • Award Id(s):
  • Award Group:

    • Funder(s):

      Beatrice Hunter Cancer Research Institute

    • Award Id(s):
    • Principal Award Recipient(s):

      L.

      Slade

©2017 American Association for Cancer Research.

2017

American Association for Cancer Research.

Mol Cancer Res (2017) 15 (12): 1637–1643.

Article history

Received:

June 22 2017

Revision Received:

August 08 2017

Accepted:

August 24 2017

Citation

Logan Slade, Thomas Pulinilkunnil; The MiTF/TFE Family of Transcription Factors: Master Regulators of Organelle Signaling, Metabolism, and Stress Adaptation. Mol Cancer Res 1 December 2017; 15 (12): 1637–1643. https://doi.org/10.1158/1541-7786.MCR-17-0320

Download citation file:

toolbar search

Search Dropdown Menu

Abstract

The microphthalmia family (MITF, TFEB, TFE3, and TFEC) of transcription factors is emerging as global regulators of cancer cell survival and energy metabolism, both through the promotion of lysosomal genes as well as newly characterized targets, such as oxidative metabolism and the oxidative stress response. In addition, MiT/TFE factors can regulate lysosomal signaling, which includes the mTORC1 and Wnt/β-catenin pathways, which are both substantial contributors to oncogenic signaling. This review describes recent discoveries in MiT/TFE research and how they impact multiple cancer subtypes. Furthermore, the literature relating to TFE-fusion proteins in cancers and the potential mechanisms through which these genomic rearrangements promote tumorigenesis is reviewed. Likewise, the emerging function of the Folliculin (FLCN) tumor suppressor in negatively regulating the MiT/TFE family and how loss of this pathway promotes cancer is examined. Recent reports are also presented that relate to the role of MiT/TFE–driven lysosomal biogenesis in sustaining cancer cell metabolism and signaling in nutrient-limiting conditions. Finally, a discussion is provided on the future directions and unanswered questions in the field. In summary, the research surrounding the MiT/TFE family indicates that these transcription factors are promising therapeutic targets and biomarkers for cancers that thrive in stressful niches. Mol Cancer Res; 15(12); 1637–43. ©2017 AACR.

Introduction

MITF is an evolutionarily conserved transcription factor with hom*ologs identified in C. elegans and Drosophila (1). The MITF family encodes four distinct genes; MITF, TFEB, TFE3, and TFEC. Structurally, MITF genes constitute a double helix leucine zipper motif, a transactivating zone, and a domain responsible for DNA contact and binding. The MiT/TFE family of basic helix-loop-helix (bHLH) transcription factors recognizes the transcription initiation or E-box (Ephrussi boxes) sites (CANNTG) in the genome (2). The initial identification of the microphthalmia family of transcription factors revealed that MiT/TFEs must hom*odimerize or heterodimerize with another member of the MiT/TFE family to activate transcription (3–6). Early studies into the function of these transcription factors identified that mutations in MITF led to Waardenburg syndrome type II, characterized by hypopigmentation and defects in ectodermal development (7), while murine hom*ozygous TFEB knockouts fail to develop due to lack of placental vascularization (8). More recently, MITF, TFEB, and TFE3 were identified as regulators of lysosomal function and metabolism. Numerous lysosomal and autophagy genes with one or more 10 base pair motifs (GTCACGTGAC) termed as Coordinated Lysosomal Expression and Regulation (CLEAR) elements are recognized by the MITF family, which in turn promotes gene transcription (9, 10). Genome-wide chromatin immunoprecipitation sequencing analysis demonstrated direct binding of TFEB to CLEAR elements with concomitant increment in lysosomal proteins (11). Genes that are most associated with TFEB regulation contain clusters of multiple CLEAR sequences. Genome-wide analysis for clustered CLEAR sequences identified 471 direct TFEB targets, which include lysosomal acidification and degradation enzymes along with autophagy, exo-, endo-, and phagocytosis genes. Surprisingly, several gene targets of TFEB also included those executing glucose and lipid metabolism, perhaps underscoring the direct connection between lysosomal function and metabolism (Fig. 1; ref. 11). Subsequent reports have also identified that both TFE3 and MITF are capable of binding CLEAR sequence elements to induce lysosomal biogenesis and autophagy in a comparable manner (12, 13).

Figure 1.

Regulation and downstream targets of the Microphthalmia family of transcription factors: TFEB, TFE3, and MITF are negatively regulated through phosphorylation by mTORC1, where they are then restricted to the cytosol by chaperone protein 14-3-3. Phosphorylation is reversed by calcineurin (CaN), although no reports have yet investigated whether this is true for MITF, and the dephosphorylated proteins are free to enter the nucleus, where they bind to E-boxes, CLEAR sequences, and M-boxes to promote transcription of associated genes. Genes regulated by TFEB, TFE3, and MITF promote autophagy and lysosomal catabolism, along with mitochondrial biogenesis. Cell processes regulated by the microphthalmia TFs sustain cell metabolism through ensuring a supply of amino acids, which feed protein and nucleotide biosynthesis, while also regulating to supply of energy via mitochondrial oxidative phosphorylation. Gene targets downstream of CLEAR sequences also include those that respond to oxidative stress, such as key components of the glutathione system.

Figure 1.

Regulation and downstream targets of the Microphthalmia family of transcription factors: TFEB, TFE3, and MITF are negatively regulated through phosphorylation by mTORC1, where they are then restricted to the cytosol by chaperone protein 14-3-3. Phosphorylation is reversed by calcineurin (CaN), although no reports have yet investigated whether this is true for MITF, and the dephosphorylated proteins are free to enter the nucleus, where they bind to E-boxes, CLEAR sequences, and M-boxes to promote transcription of associated genes. Genes regulated by TFEB, TFE3, and MITF promote autophagy and lysosomal catabolism, along with mitochondrial biogenesis. Cell processes regulated by the microphthalmia TFs sustain cell metabolism through ensuring a supply of amino acids, which feed protein and nucleotide biosynthesis, while also regulating to supply of energy via mitochondrial oxidative phosphorylation. Gene targets downstream of CLEAR sequences also include those that respond to oxidative stress, such as key components of the glutathione system.

Close modal

The autophagy–lysosome system is a catabolic cellular process for whole organelles, protein aggregates, and other macromolecules (14). During carcinogenesis, autophagy exerts an antitumorigenic effect by degrading and/or recycling damaged cellular organelles, thereby blocking the accumulation of endogenous mutagens, and preventing further genomic alterations. However, following tumor induction, cancer cells coopt autophagy as a cell survival mechanism to promote nutrient reallocation for diverse cellular needs. Therefore, autophagy can suppress cancer development through its cytoprotective properties; however, once cancer has developed, these same properties sustain survival of the tumor (15). Cytoprotective and oncoprotective properties of autophagy include managing oxidative stress, preventing DNA damage, and supporting metabolism under nutrient-depleted conditions (15, 16). Adaptive metabolic reprogramming of cancer cells provides them with the ability to utilize diverse substrates as the building blocks for molecules necessary for proliferation. Indeed, autophagy participates in this program through degradation of lipids and proteins within lysosomes to derive substrates for nucleic acid and membrane biosynthesis (14, 16). The microphthalmia family of transcription factors are regulators of the autophagy–lysosome system (Fig. 1), and increasing evidence suggests that they also directly regulate metabolic and growth signaling pathways, and as such, represent an attractive therapeutic target with wide potential cancer. This review will discuss the prospect of MITF, TFEB, and TFE3 as necessary elements for the viability of several cancer types with specific emphasis on changes in cellular autophagy and metabolism.

Role of TFEB and TFE3 as Oncogenes

A number of studies have determined TFE3 and TFEB as being oncogenes. Chromosomal translocations resulting in gene fusions involving TFE3 or TFEB are implicated in the development of sporadic renal cell carcinomas (RCC) and soft tissue sarcomas. These genetic rearrangements cause overexpression of the TFE proteins (17–19), and in the case of TFEB-MALAT1 fusion, places TFEB under the control of a more active promoter resulting in a 60-fold higher expression (20). Crucially, the resulting protein products from the gene fusion events still have functional basic helix-loop-helix domains and nuclear localization signals, keeping the transcriptional activation function intact (18). It has been reported that lysosomal localization, and thus inhibition, of MiT/TFEs requires the first 30 amino acids, corresponding to exon 1 (21). All reported gene fusions eliminate exon 1 from the resulting protein, indicating that the fusion proteins are unlikely to be able to localize to the lysosome, suggesting a mechanism of constitutive activation (18). Further associating MiT/TFEs in renal neoplasia is a kidney-specific TFEB overexpression mouse model that developed severe kidney enlargement with multiple cysts at 30 days following birth, while Ki-67–positive neoplastic lesions were detected as soon as 12 days after birth (22). Renal-specific TFEB overexpression also resulted in liver metastasis in 23% of mice (22). There are no reports about the activity of TFE fusion proteins; however, a case study has identified strong nuclear staining of the TFE3 fusion protein, and a cell line and xenograft model generated from the patient maintained this nuclear localization (23), a result that has been reproduced in several other IHC screens of TFE3 and TFEB translocation cancers (17, 24, 25).

The role of autophagy in TFE fusion cancers remains controversial. In the aforementioned mouse model of renal TFEB overexpression, LC3 expression was unchanged when compared with control mice, and crossing TFEB overexpression mice with Atg7 knockout mice did not significantly reduce cancer development (22). Conversely, several reports have identified that cathepsin K immunoreactivity and expression is a distinguishing feature of these neoplasms (26–28). Cathepsin K is a lysosomal cysteine protease, which is regulated by MITF in macrophages and osteoclasts (29), however, unlike cathepsins A, B, D, and F, does not contain and upstream CLEAR sequence promoter (11). Despite lacking a CLEAR promoter, the CTSK gene is highly enriched along with other lysosomal genes in pancreatic cancers driven by autophagy (30), and thus likely indicates a probable autophagy gene signature in TFE translocation–driven RCCs. Given that RCCs are characterized by metabolic dysregulation (31, 32), it is tempting to speculate that TFE fusion proteins promote stress response programs and help renal neoplasms to overcome metabolic crisis. There is preliminary support for this idea, as highlighted by increases in mTORC1 activity, the master regulator of growth and metabolism. TFE fusion RCCs display elevated ribosomal S6 phosphorylation, a positive indicator of mTORC1 activity, and therefore linking the MiT/TFE family of proteins with sustaining oncogenic anabolic pathways (33). Molecular analysis of TFE fusion cancers also revealed elevated expression of cell cycle–related proteins Cyclin D1 and D3 along with p21 (CDKN1A; ref. 34), which promotes Cyclin D–CDK4/6 complex formation before becoming inhibitory to cell-cycle progression through CDK4 phosphorylation (35). Interestingly, renal-specific TFEB overexpression in mice also results in elevated cyclin D1 and p21 gene expression (22).

Upstream Regulators Modifying Oncogenic Outcomes of MiT/TFEs: Role of Lysosomal Signaling and Wnt/β-Catenin Pathways

FLCN–TFE axis

Mutations in the FLCN gene result in Birt–Hogg–Dubé (BHD) syndrome characterized by renal and pulmonary cysts, noncancerous tumors of the hair follicles, and an increased risk of RCC (36). FLCN is proposed to act as a tumor suppressor through positive regulation of AMPK (AMP activated kinase; refs. 36, 37), and thus negative regulation of mTOR (38), which is supported by a hom*ozygous knockout mouse model of BHD, which displayed hyperactivation of mTOR (39). The FLCN tumor suppressor's relationship with mTOR is uncertain, given that reports describe FLCN as a GAP (GTPase-activating protein) for Rag C/D (40). Given that GDP-loaded Rag C/D is necessary for amino acid sensing by mTORC1, a GAP for these proteins will activate this pathway (Fig. 2; refs. 41, 42). Indeed, models of BHD in yeast, mammalian cancer cell lines, and mice show that FLCN knockdown or heterozygous knockout results in reduced mTORC1 activity as measured by phosphorylation of S6 or S6K, while still resulting in renal tumorigenesis (43–45). As FLCN seems to have conflicting roles in regulating mTORC1 and AMPK, it seems that there are other mechanisms through which FLCN acts as tumor suppressor and one candidate is through cytoplasmic sequestration of MiT/TFE proteins. A report published in 2010 first highlighted that FLCN and TFE3 have a direct regulatory interaction in RCC (46). FLCN-null cells were shown to have decreased TFE3 phosphorylation, which resulted in increased nuclear localization. FLCN-deficient cells also displayed greater TFE3 M-Box promoter activity and had elevated expression of MiT/TFE target genes, including several related to lysosomal activity, both in vitro and in BHD patients (46). FLCN-null cells also expressed elevated mRNA levels of GPNMB (glycoprotein nmb), a marker of melanoma, glioma, breast cancers, which was also upregulated in a renal-specific TFEB overexpression mouse model (22). Further evidence to support a role for TFEB in FLCN tumor suppression was published in 2013, wherein the authors showed that FLCN loss led to increased nuclear TFEB caused by dysregulated lysosomal signaling. The authors also confirmed that FLCN directly interacts with Rag A/B in the absence of amino acids and promotes GTP loading of Rag A/B, which is a prerequisite for mTOR activation (45). The lysosomal surface is now understood to be a center for nutrient sensing (47, 48), namely amino acids, through a complex of proteins, including Rag GTPases, the Ragulator complex, vATPase, as well as the folliculin complex, containing both FLCN and FNIP1 (42). There is strong evidence to indicate that FLCN is an activator of amino acid signaling to mTORC1 through its GEF activity on Rag A/B and GAP activity on Rag C/D. However, this role conflicts with the conventional wisdom that mTOR activity is required for tumor progression. Indeed, it seems there are few cases where mTORC1 inhibition can promote cell growth, notably in nutrient-deplete conditions. Cell cultures models of oncogenic transformation display increased proliferation in the presence of the mTOR inhibitor Torin1 only when essential amino acids are absent, which is dependent on a functional lysosome, while mouse models of pancreatic cancer have a greater proliferative index in the interior, hypoxic tumor regions after rapamycin treatment (49). Therefore, it is plausible that FLCN loss causes an increased risk of neoplasia as cells acquire the ability to cope with nutrient deprivation following constitutive activation of MiT/TFE proteins. In support of this hypothesis are data that indicate that FLCN-null cells have greater levels of autophagy proteins (50), while suppression of autophagy in these cells results in increased sensitivity to pacl*taxel treatment (51).

Figure 2.

The microphthalmia transcription factors regulate signaling networks central to cancer: TFEB, TFE3, and MITF positively regulate genes promoting mTORC1 signaling (highlighted in red and italicized). Vacuolor ATPase (vATPase) activates Ragulator, a GEF for Rag A/B in the presence of amino acids, while the folliculin complex (FLCN, folliculin-interacting protein) acts as a GAP for Rag C/D. GTP-loaded Rag A/B and GDP-loaded Rag C/D recruit mTORC1 to the lysosome, where it can be activated. Activated Rag GTPases also recruit TFEB to the lysosome in combination with FLCN, where it is phosphorylated and inactivated by TFEB; however, in cancer, loss of inhibitory phosphorylation leads to an apparent feed-forward process, increasing mTOR activity. MITF and TFEB also participate in β-catenin activation through sequestration of the destruction complex into multivesicular bodies and subsequent degradation in lysosome. Degradation of the β-catenin destruction complex causes increased β-catenin activity, leading to cell proliferation.

Figure 2.

The microphthalmia transcription factors regulate signaling networks central to cancer: TFEB, TFE3, and MITF positively regulate genes promoting mTORC1 signaling (highlighted in red and italicized). Vacuolor ATPase (vATPase) activates Ragulator, a GEF for Rag A/B in the presence of amino acids, while the folliculin complex (FLCN, folliculin-interacting protein) acts as a GAP for Rag C/D. GTP-loaded Rag A/B and GDP-loaded Rag C/D recruit mTORC1 to the lysosome, where it can be activated. Activated Rag GTPases also recruit TFEB to the lysosome in combination with FLCN, where it is phosphorylated and inactivated by TFEB; however, in cancer, loss of inhibitory phosphorylation leads to an apparent feed-forward process, increasing mTOR activity. MITF and TFEB also participate in β-catenin activation through sequestration of the destruction complex into multivesicular bodies and subsequent degradation in lysosome. Degradation of the β-catenin destruction complex causes increased β-catenin activity, leading to cell proliferation.

Close modal

FLCN and MiT/TFE in mitochondrial metabolism

FLCN loss also promotes significant metabolic remodeling, as indicated by an increase in mitochondrial biogenesis, which is dependent on PGC1α (52–54). Although metabolic changes are thought to be a result of AMPK signaling (52, 53), it is likely that activation of MiT/TFE proteins in FLCN-deficient cells causes an upregulation of PCG1α, which is under the control of a CLEAR promoter, contributing to the phenotype. Like cancers that have lost FLCN, a subset of human melanomas, approximately 10%, are characterized by elevated PGC1α expression, which is driven by overexpression of MITF-M (55). PGC1α is the master regulator of mitochondrial biogenesis, and hence oxidative metabolism, so it is not surprising that PGC1α-elevated tumors exhibit greater respiratory capacity and enhanced reactive oxygen species clearance. PGC1α-elevated tumors require PGC1α for proliferation, and gene knockdown of PGC1α renders the cells susceptible to apoptosis (55). Furthermore, constitutively active BRAF melanomas have suppressed oxidative metabolism caused by downregulation of the MITF–PGC1α axis. Conversely, therapeutic BRAF inhibition results in an increase of MITF–PCG1α axis along with oxidative metabolism. The induction of oxidative metabolism in MITF-overexpressing melanoma cells results in increased sensitivity to the mitochondrial uncoupler 2,4-dintrophenol, revealing a novel biomarker for efficacy of antimetabolism therapeutics (56).

Regulation of mTORC1 by MiT/TFE

The role of MiT/TFEs in FLCN tumor progression also highlights their role in lysosomal signaling and nutrient sensing. Indeed, it is now understood that MITF and TFEB must be recruited to lysosomes to undergo inactivation by mTOR phosphorylation, a process accomplished through GTP-loaded Rag A/B, which have a direct interaction with MiT/TFEs (21). Recent studies have identified the major players in TFEB regulation as mTORC1 (mTOR complex 1) and the ERK, which are central regulators of anabolism and proliferation (57, 58). Phosphorylation of TFEB by mTOR at serine 211 creates a 14-3-3 binding site, which results in cytosolic retention of the transcription factor (57). In the absence of mTOR repression, TFEB is no longer bound by 14-3-3 and is free to enter the nucleus where it can enhance transcription of target genes (57). Subsequent studies have concluded that both TFE3 and MITF are controlled through mTOR-mediated phosphorylation (Fig. 2; refs. 12, 30). This gives rise to a negative feedback loop, where activated MiT/TFE promotes lysosomal biogenesis, and increases autophagy, which in turn induces mTORC1 activation through increasing lysosomal amino acids, and transcriptional upregulation of mTOR signaling proteins, such as FNIP2, RagC/D, and vATPase (11). Therefore, loss of inhibitory feedback by mTORC1 on MiT/TFEs could promote oncogenic transformation through constitutive mTOR activation and signaling (Fig. 2). Work published in 2015 supports this hypothesis, where the authors confirmed that one of TFE3, MITF, or TFEB was overexpressed in most human pancreatic ductal adenocarcinoma (PDAC) cells and patient samples and showed constitutive nuclear localization (30). Localization and activation of MiT/TFEs in PDAC cells was not dependent on mTOR activation or nutrient status, indicating a loss of inhibitory feedback. The constitutive activation and expression of MiT/TFEs resulted in elevated levels of autophagy–lysosome genes and increased autophagic flux. Interestingly, mTOR activity remained constant in PDAC cells even after 60 minutes of amino acid starvation, while siRNA knockdown of the overexpressed MiT/TFE rendered mTOR amino acid sensitive. A metabolomics approach confirmed that levels of free amino acids were most affected by MiT/TFE knockdown, while overexpression of MITF in a noncancerous pancreatic duct epithelial cells supported growth in amino acid–deficient media. Further evidence for a MiT/TFE feed-forward mechanism in cancer was provided in a report published in 2017. The authors found that overexpression of MiT/TFE genes in PDAC, RCC, and melanoma directly resulted in the overexpression of RagD, which rendered mTORC1 insensitive to nutrient starvation, fueling cell proliferation and oncogenesis in an mTORC1-dependent manner (59). It is clear that MiT/TFEs and autophagy can fuel cancer metabolism; however, there remains several questions about the mechanisms that regulate their expression and activity in cancer cells. It is currently unknown as to why only one of the transcription factors (TFEB, TFE3, or MITF) is overexpressed in a particular cancer, and whether this has any relevance to the phenotype. Likewise, the role of MITF in cancers beyond melanoma is understudied; however, more recently, it has been shown in that MITF, but not the splice variant MITF-M, is overexpressed in some pancreatic cancers and thus should be researched for a role in tumorigenesis of other tissue types (30). Furthermore, questions remain about how MiT/TFEs escape regulatory control by mTOR, given that mTOR is commonly activated in many cancers. One proposed mechanism is through overexpression of nuclear importin 8 (IPO8), which was identified as a common binding partner of MiT/TFEs in PDAC cells, and knockdown of IPO8 decreased nuclear localization of the transcription factors. It remains to be discovered exactly how IPO8 prevents mTOR inhibition; however, there may be alternate mechanisms through which MiT/TFEs become constitutively activated. Alterations in hetero- or hom*odimerization frequency and spontaneity with other MiT/TFE family members, as well as incorrect spatial regulation, that is, failing to recruit MiT/TFEs to the lysosome where mTOR resides could also account for constitutive activity.

Wnt/β-catenin–TFE axis

A further mechanism through which MiT/TFEs can become implicated in cancer is through interplay between other known oncogene networks, namely the Wnt/β-catenin pathway. The Wnt signaling pathway functions through promoting nuclear localization of β-catenin, an oncogenic transcription factor, as a result of degrading the destruction complex, which includes GSK3β, AXIN, and APC among other proteins. β-Catenin is found to be constitutively activated in multiple cancer types as well as in mesenchymal and stem cell–like cancer cells (60–63). Two reports from 2015 indicate that MiT/TFEs are under the direct regulation of Wnt signaling pathway member GSK3β as a result of three conserved serine residues in the C-terminus region. Ploper and colleagues (13) showed that Wnt treatment of melanoma cells results in increased MITF stability and nuclear localization, while mutation of the putative GSK3β phosphorylation sites produced the same phenotype. With regards to TFEB, another group (64) similarly noted that GSK3β inhibition caused increased TFEB nuclear localization, as well as lysosomal biogenesis and autophagy; however, the stability of the protein was unstudied. Interestingly, recent reports have also highlighted the role of MiT/TFEs in promoting Wnt signaling through sequestration and degradation of the destruction complex in autolysosomes. A tetracycline-inducible MITF melanoma cell line displayed greater Wnt reporter gene activity following MITF induction, in a manner dependent on crucial endosome trafficking protein Vps27 (13). Furthermore, MITF induction in C32 melanoma cells caused colocalization of Axin1, the scaffold for the β-catenin destruction complex, with vesicular structures indicating that MITF induced sequestration of the destruction complex as a mediator of Wnt signaling (13). Modulation of Wnt signaling through destruction complex sequestration is not limited to MITF, as chronic TFEB inhibition in AMPK double knockout (DKO) mouse embryos led to impaired endoderm differentiation due to increased β-catenin phosphorylation resulting in decreased gene expression of β-catenin targets. Wnt signaling was partially rescued in AMPK DKO mouse embryos through expression of constitutively active TFEB. Interestingly, TFEB and MITF appear to mediate Wnt signaling through similar mechanisms, as wild-type but not AMPK DKO mouse embryos displayed extensive colocalization between lysosomes and GSK3β (65). Wnt signaling and gene expression is also upregulated in TFEB overexpression renal cancer mouse models, while treating these mice with Wnt inhibitors successfully reduces tumor growth (22). Although the evidence is clear that MiT/TFEs feed into Wnt signaling and vice versa (Fig. 2), the requirement of autophagy in the process is arguable. Indeed, autophagy can negatively regulate β-catenin signaling upon nutrient deprivation through binding of LC3 to β-catenin and subsequent degradation (66). Likewise, autophagy can inhibit Wnt signal transduction through degradation of dishevelled (DVL), the cytoplasmic effector of Wnt receptor: frizzled (67). Although the association between the MiT/TFE family and Wnt signaling has only recently become apparent, MITF has been linked to the Wnt pathway in melanoma far earlier. β-Catenin–induced melanoma growth requires functional MITF, and nuclear accumulation of β-catenin was correlated with increased MITF expression (68). Likewise, the melanocyte-specific isoform, MITF-M, is directly regulated by downstream transcription factor of Wnt, LEF1, through binding of the upstream M promoter (69, 70). Conversely, MITF is regulated by noncanonical Wnt family members, namely WNT5A, which causes downregulation of MITF and is characteristic of a distinct class of melanomas that are resistant to BRAF inhibition and immunotherapy (71, 72).

Conclusion and Future Role of MiT/TFEs Biology in Health and Disease

In conclusion, the microphthalmia family of transcription factors is emerging as important players in the development and sustainment of cancer. These transcription factors are activated or overexpressed in a diverse array of cancers where they are involved in sustaining proliferation, driving metabolism, and overcoming stress. As a result, they represent an attractive therapeutic target alone and in combination with other chemotherapeutic agents that induce cell stress. However, important questions still need to be answered before this research can be translated to improved patient outcomes. A better understanding of mechanisms surrounding activation in the cancer cell will help design therapies, especially as MiT/TFE inhibitors tend to be oncogenic drivers. Furthermore, an understanding of the systemic consequence of MiT/TFE inhibition must be studied, given that these transcription factors are considered essential for preventing neurodegeneration and cardiovascular disease, and with respect to cancer, impacts on immune system function merit further investigation.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Grant Support

This work was funded by grants from the Natural Sciences and Engineering Research Council of Canada (RGPIN-2014-03687) and Beatrice Hunter Cancer Research Institute seed funding grant (to T. Pulinilkunnil). L. Slade is supported by the Cancer Research Training Program of the Beatrice Hunter Cancer Research Institute, with funds provided by the Canadian Breast Cancer Foundation—Atlantic Region and the New Brunswick Health Research Foundation.

References

1.

Hallsson

JH

,

Haflidadottir

BS

,

Stivers

C

,

Odenwald

W

,

Arnheiter

H

,

Pignoni

F

, et al 

The basic helix-loop-helix leucine zipper transcription factor Mitf is conserved in Drosophila and functions in eye development

.

Genetics

2004

;

167

:

233

41

.

2.

Betschinger

J

,

Nichols

J

,

Dietmann

S

,

Corrin

PD

,

Paddison

PJ

,

Smith

A

. 

Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3

.

Cell

2013

;

153

:

335

47

.

3.

Fisher

DE

,

Carr

CS

,

Parent

LA

,

Sharp

PA

. 

TFEB has DNA-binding and oligomerization properties of a unique helix-loop-helix/leucine-zipper family

.

Genes Dev

1991

;

5

:

2342

52

.

4.

Hemesath

TJ

,

Steingrímsson

E

,

McGill

G

,

Hansen

MJ

,

Vaught

J

,

Hodgkinson

CA

, et al 

microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family

.

Genes Dev

1994

;

8

:

2770

80

.

5.

Muhle-Goll

C

,

Gibson

T

,

Schuck

P

,

Schubert

D

,

Nalis

D

,

Nilges

M

, et al 

The dimerization stability of the HLH-LZ transcription protein family is modulated by the leucine zippers: A CD and NMR study of TFEB and c-Myc

.

Biochemistry

1994

;

33

:

11296

306

.

6.

Pogenberg

V

,

Ögmundsdóttir

MH

,

Bergsteinsdóttir

K

,

Schepsky

A

,

Phung

B

,

Deineko

V

, et al 

Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF

.

Genes Dev

2012

;

26

:

2647

58

.

7.

Tassabehji

M

,

Newton

VE

,

Read

AP

. 

Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene

.

Nat Genet

1994

;

8

:

251

5

.

8.

Steingrimsson

E

,

Tessarollo

L

,

Reid

SW

,

Jenkins

NA

,

Copeland

NG

. 

The bHLH-Zip transcription factor Tfeb is essential for placental vascularization

.

Development

1998

;

125

:

4607

.

9.

Sardiello

M

,

Palmieri

M

,

Ronza

A

,

Medina

DL

,

Valenza

M

,

Gennarino

VA

. 

A gene network regulating lysosomal biogenesis and function

.

Science

2009

;

325

:

473

7

.

10.

Martina

JA

,

Diab

HI

,

Li

H

,

Puertollano

R

. 

Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis

.

Cell Mol Life Sci

2014

;

71

:

2483

97

.

11.

Palmieri

M

,

Impey

S

,

Kang

H

,

di Ronza

A

,

Pelz

C

,

Sardiello

M

, et al 

Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways

.

Hum Mol Genet

2011

;

20

:

3852

66

.

12.

Martina

JA

,

Diab

HI

,

Lishu

L

,

Jeong-A

L

,

Patange

S

,

Raben

N

, et al 

The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris

.

Sci Signal

2014

;

7

:

ra9

.

13.

Ploper

D

,

Taelman

VF

,

Robert

L

,

Perez

BS

,

Titz

B

,

Chen

HW

, et al 

MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells

.

Proc Natl Acad Sci U S A

2015

;

112

:

E420

E9

.

14.

Kaur

J

,

Debnath

J

. 

Autophagy at the crossroads of catabolism and anabolism

.

Nat Rev Mol Cell Biol

2015

;

16

:

461

72

.

15.

16.

Kenific

CM

,

Debnath

J

. 

Cellular and metabolic functions for autophagy in cancer cells

.

Trends Cell Biol

2015

;

25

:

37

45

.

17.

Argani

P

,

Lal

P

,

Hutchinson

B

,

Lui

MY

,

Reuter

VE

,

Ladanyi

M

. 

Aberrant nuclear immunoreactivity for TFE3 in neoplasms with TFE3 gene fusions: a sensitive and specific immunohistochemical assay

.

Am J Surg Pathol

2003

;

27

:

750

61

.

18.

Kauffman

EC

,

Ricketts

CJ

,

Rais-Bahrami

S

,

Yang

Y

,

Merino

MJ

,

Bottaro

DP

, et al 

Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers

.

Nat Rev Urol

2014

;

11

:

465

75

.

19.

Klatte

T

,

Streubel

B

,

Wrba

F

,

Remzi

M

,

Krammer

B

,

de Martino

M

, et al 

Renal cell carcinoma associated with transcription factor E3 expression and Xp11.2 translocation

.

Am J Clin Pathol

2012

;

137

:

761

8

.

20.

Kuiper

RP

,

Schepens

M

,

Thijssen

J

,

van Asseldonk

M

,

van den Berg

E

,

Bridge

J

, et al 

Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution

.

Hum Mol Genet

2003

;

12

:

1661

9

.

21.

Martina

JA

,

Puertollano

R

. 

Rag GTPases mediate amino acid–dependent recruitment of TFEB and MITF to lysosomes

.

J Cell Biol

2013

;

200

:

475

91

.

22.

Calcagnì

A

,

Kors

L

,

Verschuren

E

,

De Cegli

R

,

Zampelli

N

,

Nusco

E

, et al 

Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling

.

eLife

2016

;

5

:

e17047

.

23.

Hirobe

M

,

Masumori

N

,

Tanaka

T

,

Kitamura

H

,

Tsukamoto

T

. 

Establishment of an ASPL-TFE3 renal cell carcinoma cell line (S-TFE)

.

Cancer Biol Ther

2013

;

14

:

502

10

.

24.

Altinok

G

,

Kattar

MM

,

Mohamed

A

,

Poulik

J

,

Grignon

D

,

Rabah

R

. 

Pediatric renal carcinoma associated with Xp11.2 translocations/TFE3 gene fusions and clinicopathologic associations

.

Pediatr Dev Pathol

2005

;

8

:

168

80

.

25.

Argani

P

,

Laé

M

,

Hutchinson

B

,

Reuter

VE

,

Collins

MH

,

Perentesis

J

, et al 

Renal carcinomas with the t(6;11)(p21;q12): clinicopathologic features and demonstration of the specific alpha-TFEB gene fusion by immunohistochemistry, RT-PCR, and DNA PCR

.

Am J Surg Pathol

2005

;

29

:

230

40

.

26.

Martignoni

G

,

Pea

M

,

Gobbo

S

,

Brunelli

M

,

Bonetti

F

,

Segala

D

, et al 

Cathepsin-K immunoreactivity distinguishes MiTF/TFE family renal translocation carcinomas from other renal carcinomas

.

Mod Pathol

2009

;

22

:

1016

22

.

27.

Zheng

G

,

Martignoni

G

,

Antonescu

C

,

Montgomery

E

,

Eberhart

C

,

Netto

G

, et al 

A broad survey of cathepsin K immunoreactivity in human neoplasms

.

Am J Clin Pathol

2013

;

139

:

151

9

.

28.

Lilleby

W

,

Vlatkovic

L

,

Meza-Zepeda

LA

,

Revheim

M-E

,

Hovig

E

. 

Translocational renal cell carcinoma (t(6;11)(p21;q12) with transcription factor EB (TFEB) amplification and an integrated precision approach: a case report

.

J Med Case Rep

2015

;

9

:

1

9

.

29.

Motyckova

G

,

Weilbaecher

KN

,

Horstmann

M

,

Rieman

DJ

,

Fisher

DZ

,

Fisher

DE

. 

Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family

.

Proc Natl Acad Sci

2001

;

98

:

5798

803

.

30.

Perera

RM

,

Stoykova

S

,

Nicolay

BN

,

Ross

KN

,

Fitamant

J

,

Boukhali

M

, et al 

Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism

.

Nature

2015

;

524

:

361

5

.

31.

Hakimi

AA

,

Reznik

E

,

Lee

CH

,

Creighton

CJ

,

Brannon

AR

,

Luna

A

, et al 

An integrated metabolic atlas of clear cell renal cell carcinoma

.

Cancer Cell

2016

;

29

:

104

16

.

32.

Linehan

WM

,

Srinivasan

R

,

Schmidt

LS

. 

The genetic basis of kidney cancer: a metabolic disease

.

Nat Rev Urol

2010

;

7

:

277

85

.

33.

Argani

P

,

Hicks

J

,

De Marzo

AM

,

Albadine

R

,

Illei

PB

,

Ladanyi

M

, et al 

Xp11 translocation renal cell carcinoma (RCC): extended immunohistochemical profile emphasizing novel RCC markers

.

Am J Surg Pathol

2010

;

34

:

1295

303

.

34.

Müller-Höcker

J

,

Babaryka

G

,

Schmid

I

,

Jung

A

. 

Overexpression of cyclin D1, D3, and p21 in an infantile renal carcinoma with Xp11.2 TFE3-gene fusion

.

Pathol Res Pract

2008

;

204

:

589

97

.

35.

Coleman

ML

,

Marshall

CJ

,

Olson

MF

. 

RAS and RHO GTPases in G1-phase cell-cycle regulation

.

Nat Rev Mol Cell Biol

2004

;

5

:

355

66

.

36.

Schmidt

LS

,

Linehan

WM

. 

Molecular genetics and clinical features of Birt-Hogg-Dube syndrome

.

Nat Rev Urol

2015

;

12

:

558

69

.

37.

Baba

M

,

Hong

SB

,

Sharma

N

,

Warren

MB

,

Nickerson

ML

,

Iwamatsu

A

, et al 

Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling

.

Proc Natl Acad Sci

2006

;

103

:

15552

7

.

38.

Shackelford

DB

,

Shaw

RJ

. 

The LKB1-AMPK pathway: metabolism and growth control in tumour suppression

.

Nat Rev Cancer

2009

;

9

:

563

75

.

39.

Hasumi

Y

,

Baba

M

,

Ajima

R

,

Hasumi

H

,

Valera

VA

,

Klein

ME

, et al 

hom*ozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2

.

Proc Natl Acad Sci

2009

;

106

:

18722

7

.

40.

Tsun

ZY

,

Bar-Peled

L

,

Chantranupong

L

,

Zoncu

R

,

Wang

T

,

Kim

C

, et al 

The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1

.

Mol Cell

2013

;

52

:

495

505

.

41.

Sancak

Y

,

Peterson

TR

,

Shaul

YD

,

Lindquist

RA

,

Thoreen

CC

,

Bar-Peled

L

, et al 

The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1

.

Science

2008

;

320

:

1496

501

.

42.

Kim

J

,

Kim

E

. 

Rag GTPase in amino acid signaling

.

Amino Acids

2016

;

48

:

915

28

.

43.

van Slegtenhorst

M

,

Khabibullin

D

,

Hartman

TR

,

Nicolas

E

,

Kruger

WD

,

Henske

EP

. 

The Birt-Hogg-Dube and tuberous sclerosis complex hom*ologs have opposing roles in amino acid homeostasis in schizosaccharomyces pombe

.

J Biol Chem

2007

;

282

:

24583

90

.

44.

Hartman

TR

,

Nicolas

E

,

Klein-Szanto

A

,

Al-Saleem

T

,

Cash

TP

,

Simon

MC

, et al 

The role of the Birt-Hogg-Dubé protein in mTOR activation and renal tumorigenesis

.

Oncogene

2009

;

28

:

1594

604

.

45.

Petit

CS

,

Roczniak-Ferguson

A

,

Ferguson

SM

. 

Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases

.

J Cell Biol

2013

;

202

:

1107

22

.

46.

Hong

SB

,

Oh

H

,

Valera

VA

,

Baba

M

,

Schmidt

LS

,

Linehan

WM

. 

Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization

.

PLoS One

2010

;

5

:

e15793

.

47.

Settembre

C

,

Fraldi

A

,

Medina

DL

,

Ballabio

A

. 

Signals from the lysosome: a control centre for cellular clearance and energy metabolism

.

Nat Rev Mol Cell Biol

2013

;

14

:

283

96

.

48.

Perera

RM

,

Zoncu

R

. 

The lysosome as a regulatory hub

.

Annu Rev Cell Dev Biol

2016

;

32

:

223

53

.

49.

Palm

W

,

Park

Y

,

Wright

K

,

Pavlova

NN

,

Tuveson

DA

,

Thompson

CB

. 

The utilization of extracellular proteins as nutrients is suppressed by mTORC1

.

Cell

2015

;

162

:

259

70

.

50.

Dunlop

EA

,

Seifan

S

,

Claessens

T

,

Behrends

C

,

Kamps

MA

,

Rozycka

E

, et al 

FLCN, a novel autophagy component, interacts with GABARAP and is regulated by ULK1 phosphorylation

.

Autophagy

2014

;

10

:

1749

60

.

51.

Zhang

Q

,

Si

S

,

Schoen

S

,

Chen

J

,

Jin

XB

,

Wu

G

. 

Suppression of autophagy enhances preferential toxicity of pacl*taxel to folliculin-deficient renal cancer cells

.

J Exp Clin Cancer Res

2013

;

32

:

99

.

52.

Yan

M

,

Gingras

MC

,

Dunlop

EA

,

Nouet

Y

,

Dupuy

F

,

Jalali

Z

, et al 

The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation

.

J Clin Invest

2014

;

124

:

2640

50

.

53.

Yan

M

,

Audet-Walsh

É

,

Manteghi

S

,

Dufour

CR

,

Walker

B

,

Baba

M

, et al 

Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα

.

Genes Dev

2016

;

30

:

1034

46

.

54.

Hasumi

H

,

Baba

M

,

Hasumi

Y

,

Huang

Y

,

Oh

H

,

Hughes

RM

, et al 

Regulation of mitochondrial oxidative metabolism by tumor suppressor FLCN

.

J Natl Cancer Inst

2012

;

104

:

1750

64

.

55.

Vazquez

F

,

Lim

JH

,

Chim

H

,

Bhalla

K

,

Girnun

G

,

Pierce

K

, et al 

PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress

.

Cancer Cell

2013

;

23

:

287

301

.

56.

Haq

R

,

Shoag

J

,

Andreu-Perez

P

,

Yokoyama

S

,

Edelman

H

,

Rowe

GC

, et al 

Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF

.

Cancer Cell

2013

;

23

:

302

15

.

57.

Roczniak-Ferguson

A

,

Petit

CS

,

Froehlich

F

,

Qian

S

,

Ky

J

,

Angarola

B

, et al 

The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis

.

Sci Signal

2012

;

5

:

ra42

.

58.

Settembre

C

,

Zoncu

R

,

Medina

DL

,

Vetrini

F

,

Erdin

S

,

Erdin

S

, et al 

A lysosome‐to‐nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB

.

EMBO J

2012

;

31

:

1095

.

59.

Di Malta

C

,

Siciliano

D

,

Calcagni

A

,

Monfregola

J

,

Punzi

S

,

Pastore

N

, et al 

Transcriptional activation of RagD GTPase controls mTORC1 and promotes cancer growth

.

Science

2017

;

356

:

1188

.

60.

Cleary

SP

,

Jeck

WR

,

Zhao

X

,

Chen

K

,

Selitsky

SR

,

Savich

GL

, et al 

Identification of driver genes in hepatocellular carcinoma by exome sequencing

.

Hepatology (Baltimore, Md)

2013

;

58

:

1693

702

.

61.

Morin

PJ

,

Sparks

AB

,

Korinek

V

,

Barker

N

,

Clevers

H

,

Vogelstein

B

, et al 

Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC

.

Science

1997

;

275

:

1787

.

62.

Lamouille

S

,

Xu

J

,

Derynck

R

. 

Molecular mechanisms of epithelial–mesenchymal transition

.

Nat Rev Mol Cell Biol

2014

;

15

:

178

96

.

63.

Vermeulen

L

,

De Sousa E Melo

F

,

van der Heijden

M

,

Cameron

K

,

de Jong

JH

,

Borovski

T

, et al 

Wnt activity defines colon cancer stem cells and is regulated by the microenvironment

.

Nat Cell Biol

2010

;

12

:

468

76

.

64.

Marchand

B

,

Arsenault

D

,

Raymond-Fleury

A

,

Boisvert

FM

,

Boucher

MJ

. 

Glycogen synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells

.

J Biol Chem

2015

;

290

:

5592

605

.

65.

Young

NP

,

Kamireddy

A

,

Van Nostrand

JL

,

Eichner

LJ

,

Shokhirev

MN

,

Dayn

Y

, et al 

AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes

.

Genes Dev

2016

;

30

:

535

52

.

66.

Petherick

KJ

,

Williams

AC

,

Lane

JD

,

Ordóñez-Morán

P

,

Huelsken

J

,

Collard

TJ

, et al 

Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk

.

EMBO J

2013

;

32

:

1903

.

67.

Gao

C

,

Cao

W

,

Bao

L

,

Zuo

W

,

Xie

G

,

Cai

T

, et al 

Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation

.

Nat Cell Biol

2010

;

12

:

781

90

.

68.

Widlund

HR

,

Horstmann

MA

,

Price

ER

,

Cui

J

,

Lessnick

SL

,

Wu

M

, et al 

β-catenin–induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor

.

J Cell Biol

2002

;

158

:

1079

87

.

69.

Dorsky

RI

,

Raible

DW

,

Moon

RT

. 

Direct regulation of nacre, a zebrafish MITF hom*olog required for pigment cell formation, by the Wnt pathway

.

Genes Dev

2000

;

14

:

158

62

.

70.

Saito

H

,

Yasumoto

KI

,

Takeda

K

,

Takahashi

K

,

Yamamoto

H

,

Shibahara

S

. 

Microphthalmia-associated transcription factor in the Wnt signaling pathway

.

Pigment Cell Res

2003

;

16

:

261

5

.

71.

Dissanayake

SK

,

Olkhanud

PB

,

Oapos;Connell

MP

,

Carter

A

,

French

AD

,

Camilli

TC

, et al 

Wnt5A regulates expression of tumor associated antigens in melanoma via changes in STAT3 phosphorylation

.

Cancer Res

2008

;

68

:

10205

14

.

72.

Wellbrock

C

,

Arozarena

I

. 

Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy

.

Pigment Cell Melanoma Res

2015

;

28

:

390

406

.

©2017 American Association for Cancer Research.

2017

American Association for Cancer Research.

2,203 Views

94 Web of Science

98 Crossref

View Metrics

×

Advertisem*nt

Email alerts

Article Activity Alert

eTOC Alert

Close Modal

The MiTF/TFE Family of Transcription Factors: Master Regulators of Organelle Signaling, Metabolism, and Stress Adaptation (2024)
Top Articles
What are Indicator Templates for?
The Bloodiest Century | American Diplomacy Est 1996
NOAA: National Oceanic & Atmospheric Administration hiring NOAA Commissioned Officer: Inter-Service Transfer in Spokane Valley, WA | LinkedIn
Ups Stores Near
Voorraad - Foodtrailers
Bellinghamcraigslist
David Packouz Girlfriend
Gameday Red Sox
Back to basics: Understanding the carburetor and fixing it yourself - Hagerty Media
Legacy First National Bank
Magic Mike's Last Dance Showtimes Near Marcus Cedar Creek Cinema
Sunday World Northern Ireland
Texas (TX) Powerball - Winning Numbers & Results
Moe Gangat Age
Betonnen afdekplaten (schoorsteenplaten) ter voorkoming van lekkage schoorsteen. - HeBlad
Jc Post News
Bitlife Tyrone's
Check From Po Box 1111 Charlotte Nc 28201
Florida History: Jacksonville's role in the silent film industry
Foxy Brown 2025
Hermitcraft Texture Pack
Craigslist Pet Phoenix
Curver wasmanden kopen? | Lage prijs
Heart and Vascular Clinic in Monticello - North Memorial Health
Gas Buddy Prices Near Me Zip Code
Avatar: The Way Of Water Showtimes Near Maya Pittsburg Cinemas
Divide Fusion Stretch Hoodie Daunenjacke für Herren | oliv
Medline Industries, LP hiring Warehouse Operator - Salt Lake City in Salt Lake City, UT | LinkedIn
Expression Home XP-452 | Grand public | Imprimantes jet d'encre | Imprimantes | Produits | Epson France
Publix Christmas Dinner 2022
Skepticalpickle Leak
Mchoul Funeral Home Of Fishkill Inc. Services
R/Sandiego
RFK Jr., in Glendale, says he's under investigation for 'collecting a whale specimen'
Arcane Odyssey Stat Reset Potion
Orangetheory Northville Michigan
4083519708
Tmka-19829
Msnl Seeds
Compare Plans and Pricing - MEGA
159R Bus Schedule Pdf
Spectrum Outage in Genoa City, Wisconsin
Puretalkusa.com/Amac
Guy Ritchie's The Covenant Showtimes Near Grand Theatres - Bismarck
Coroner Photos Timothy Treadwell
COVID-19/Coronavirus Assistance Programs | FindHelp.org
Frigidaire Fdsh450Laf Installation Manual
Best Suv In 2010
How To Win The Race In Sneaky Sasquatch
Peugeot-dealer Hedin Automotive: alles onder één dak | Hedin
Vcuapi
Https://Eaxcis.allstate.com
Latest Posts
Article information

Author: The Hon. Margery Christiansen

Last Updated:

Views: 6020

Rating: 5 / 5 (70 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: The Hon. Margery Christiansen

Birthday: 2000-07-07

Address: 5050 Breitenberg Knoll, New Robert, MI 45409

Phone: +2556892639372

Job: Investor Mining Engineer

Hobby: Sketching, Cosplaying, Glassblowing, Genealogy, Crocheting, Archery, Skateboarding

Introduction: My name is The Hon. Margery Christiansen, I am a bright, adorable, precious, inexpensive, gorgeous, comfortable, happy person who loves writing and wants to share my knowledge and understanding with you.