The chemistry of snake venom and its medicinal potential (2024)

  • Holford, M., Daly, M., King, G. F. & Norton, R. S. Venoms to the rescue. Science 361, 842–844 (2018).

    Article CAS PubMed Google Scholar

  • Casewell, N. R., Wüster, W., Vonk, F. J., Harrison, R. A. & Fry, B. G. Complex co*cktails: the evolutionary novelty of venoms. Trends Ecol. Evol. 28, 219–229 (2013). A review of the natural history of venoms and mechanisms of venom evolution.

    Article PubMed Google Scholar

  • King, G. F. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin. Biol. Ther. 11, 1469–1484 (2011). This review covers all stages of the development of drugs based on animal venoms.

    Article CAS PubMed Google Scholar

  • Herzig, V. et al. Animal toxins — nature’s evolutionary-refined toolkit for basic research and drug discovery. Biochem. Pharmacol. 181, 114096 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Pineda, S. S. et al. Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proc. Natl Acad. Sci. USA 117, 11399–11408 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Cid-Uribe, J. I., Veytia-Bucheli, J. I., Romero-Gutierrez, T., Ortiz, E. & Possani, L. D. Scorpion venomics: a 2019 overview. Expert Rev. Proteom. 17, 67–83 (2020).

    Article CAS Google Scholar

  • Tasoulis, T. & Isbister, G. K. A review and database of snake venom proteomes. Toxins 9, 290 (2017). An analysis of the composition and diversity of snake venom.

    Article PubMed Central Google Scholar

  • Casewell, N. R. et al. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc. Natl Acad. Sci. USA 111, 9205–9210 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  • Massey, D. J. et al. Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from southern Arizona. J. Proteom. 75, 2576–87 (2012).

    Article CAS Google Scholar

  • Casewell, N. R., Jackson, T. N. W., Laustsen, A. H. & Sunagar, K. Causes and consequences of snake venom variation. Trends Pharmacol. Sci. 41, 570–581 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Durban, J. et al. Integrated venomics and venom gland transcriptome analysis of juvenile and adult Mexican rattlesnakes Crotalus simus, C. tzabcan, and C. culminatus revealed miRNA-modulated ontogenetic shifts. J. Proteome Res. 16, 3370–3390 (2017).

    Article CAS PubMed Google Scholar

  • Pla, D. et al. Phylovenomics of Daboia russelii across the Indian subcontinent. Bioactivities and comparative in vivo neutralization and in vitro third-generation antivenomics of antivenoms against venoms from India, Bangladesh and Sri Lanka. J. Proteom. 207, 103443 (2019).

    Article CAS Google Scholar

  • Senji Laxme, R. R. et al. Beyond the ‘big four’: venom profiling of the medically important yet neglected Indian snakes reveals disturbing antivenom deficiencies. PLoS Negl. Trop. Dis. 13, e0007899 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • Chanda, A., Kalita, B., Patra, A., Senevirathne, W. D. S. T. & Mukherjee, A. K. Proteomic analysis and antivenomics study of Western India Naja naja venom: correlation between venom composition and clinical manifestations of cobra bite in this region. Expert Rev. Proteom. 16, 171–184 (2018).

    Article Google Scholar

  • Tasoulis, T., Pukala, T. L. & Isbister, G. K. Investigating toxin diversity and abundance in snake venom proteomes. Front. Pharmacol. (2022). A review of the proteomic methods used to separate and quantify snake venom toxins, comparing their merits and limitations.

  • Editorial. Snake-bite envenoming: a priority neglected tropical disease. Lancet 390, 2 (2017).

    Article Google Scholar

  • Gutierrez, J. M. et al. Snakebite envenoming. Nat. Rev. Dis. Primers 3, 17063 (2017). A review on the pathophysiology and treatment of snakebite envenoming.

    Article PubMed Google Scholar

  • Williams, D. The Global Snake Bite Initiative: an antidote for snake bite. Lancet 375, 89–91 (2010).

    Article PubMed Google Scholar

  • Kasturiratne, A. et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 5, 1591–1604 (2008).

    Article Google Scholar

  • McDermott, A. Venom back in vogue as a wellspring for drug candidates. Proc. Natl Acad. Sci. USA 117, 10100–10104 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Bordon, K. et al. From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery. Front. Pharmacol. 11, 1132 (2020).

    Article PubMed PubMed Central Google Scholar

  • Almeida, J. R. R. et al. Snake venom peptides and low mass proteins: molecular tools and therapeutic agents. Curr. Med. Chem. 24, 3254–3282 (2017).

    Article CAS PubMed Google Scholar

  • Fry, B. G. From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 15, 403–420 (2005).

    Article CAS PubMed PubMed Central Google Scholar

  • Ojeda, P. G. et al. Computational studies of snake venom toxins. Toxins 10, 8 (2018).

    Article Google Scholar

  • Calvete, J. J., Sanz, L., Angulo, Y., Lomonte, B. & Gutiérrez, J. M. Venoms, venomics, antivenomics. FEBS Lett. 583, 1736–1743 (2009).

    Article CAS PubMed Google Scholar

  • Modahl, C. M., Brahma, R. K., Koh, C. Y., Shioi, N. & Kini, R. M. Omics technologies for profiling toxin diversity and evolution in snake venom: impacts on the discovery of therapeutic and diagnostic agents. Annu. Rev. Anim. Biosci. 8, 91–116 (2020).

    Article CAS PubMed Google Scholar

  • The Uniprot Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, 480–489 (2021).

    Article Google Scholar

  • Simoes-Silva, R. et al. Snake venom, a natural library of new potential therapeutic molecules: challenges and current perspectives. Curr. Pharm. Biotechnol. 19, 308–335 (2018).

    Article CAS PubMed Google Scholar

  • Calvete, J. J. Next-generation snake venomics: protein-locus resolution through venom proteome decomplexation. Expert Rev. Proteom. 11, 315–329 (2014).

    Article CAS Google Scholar

  • Brahma, R. K., McCleary, R. J. R., Kini, R. M. & Doley, R. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes. Toxicon 93, 1–10 (2015).

    Article CAS PubMed Google Scholar

  • Liu, L. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012, 251364 (2012).

    Article PubMed PubMed Central Google Scholar

  • Gutiérrez, J. M. & Lomonte, B. Phospholipases A2: unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon 62, 27–39 (2013). A review of the structure and function of the central PLA2 toxin family.

    Article PubMed Google Scholar

  • Dennis, E. A., Cao, J., Hsu, Y. H., Magrioti, V. & Kokotos, G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem. Rev. 111, 6130–6185 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  • Kang, T. S. et al. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J. 278, 4544–4576 (2011). A paper focusing on the structure and reaction mechanisms of the most prominent snake venom enzymatic toxins.

    Article CAS PubMed Google Scholar

  • Schaloske, R. H. & Dennis, E. A. The phospholipase A2 superfamily and its group numbering system. Biochim. Biophys. Acta 1761, 1246–59 (2006).

    Article CAS PubMed Google Scholar

  • Ferraz, C. R. et al. Multifunctional toxins in snake venoms and therapeutic implications: from pain to hemorrhage and necrosis. Front. Ecol. Evol. 7, 218 (2019).

    Article Google Scholar

  • Kini, R. M. & Koh, C. Y. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases. Biochem. Pharmacol. 181, 114105 (2020). A review of the family of 3FTxs and their potential medicinal applications for cardiovascular diseases.

    Article CAS PubMed Google Scholar

  • Fry, B. G. et al. Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J. Mol. Evol. 57, 110–129 (2003).

    Article CAS PubMed Google Scholar

  • Kini, R. M. & Doley, R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon 56, 855–867 (2010).

    Article CAS PubMed Google Scholar

  • Olaoba, O. T., Karina dos Santos, P., Selistre-de-Araujo, H. S. & Ferreira de Souza, D. H. Snake venom metalloproteinases (SVMPs): a structure–function update. Toxicon X 7, 100052 (2020). A review of the large and complex family of SVMP toxins.

    Article CAS PubMed PubMed Central Google Scholar

  • Gutiérrez, J. M., Escalante, T., Rucavado, A. & Herrera, C. Hemorrhage caused by snake venom metalloproteinases: a journey of discovery and understanding. Toxins 8, 93 (2016).

    Article PubMed PubMed Central Google Scholar

  • Takeda, S. ADAM and ADAMTS family proteins and snake venom metalloproteinases: a structural overview. Toxins 8, 155 (2016).

    Article PubMed Central Google Scholar

  • Ullah, A. et al. Thrombin-like enzymes from snake venom: structural characterization and mechanism of action. Int. J. Biol. Macromol. 114, 788–811 (2018).

    Article CAS PubMed Google Scholar

  • Hiu, J. J. & Yap, M. K. K. Cytotoxicity of snake venom enzymatic toxins: phospholipase A(2) and l-amino acid oxidase. Biochem. Soc. Trans. 48, 719–731 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Tan, K. K., Bay, B. H. & Gopalakrishnakone, P. l-amino acid oxidase from snake venom and its anticancer potential. Toxicon 144, 7–13 (2018).

    Article CAS PubMed Google Scholar

  • Paloschi, M. V. An update on potential molecular mechanisms underlying the actions of snake venom l-amino acid oxidases (LAAOs). Curr. Med. Chem. 25, 2520–2530 (2018).

    Article CAS PubMed Google Scholar

  • Ullah, A. Structure–function studies and mechanism of action of snake venom l-amino acid oxidases. Front. Pharmacol. 11, 110 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Inagaki, H. in Snake Venoms (eds Gopalakrishnakone, P., Inagaki, H., Vogel, C.-V., Mukherjee, A. K. & Rashed Rahmy, T.) (Springer, 2017).

  • Markland, F. S. & Swenson, S. Snake venom metalloproteinases. Toxicon 62, 3–18 (2013).

    Article CAS PubMed Google Scholar

  • Serrano, S. M. & Maroun, R. C. Snake venom serine proteinases: sequence hom*ology vs. substrate specificity, a paradox to be solved. Toxicon 45, 1115–1132 (2005).

    Article CAS PubMed Google Scholar

  • Serrano, S. M. The long road of research on snake venom serine proteinases. Toxicon 62, 19–26 (2013).

    Article CAS PubMed Google Scholar

  • Arlinghaus, F. T. & Eble, J. A. C-type lectin-like proteins from snake venoms. Toxicon 60, 512–519 (2012).

    Article CAS PubMed Google Scholar

  • Morita, T. Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities. Toxicon 45, 1099–1114 (2005).

    Article CAS PubMed Google Scholar

  • Lu, Q., Navdaev, A., Clemetson, J. M. & Clemetson, K. J. Snake venom C-type lectins interacting with platelet receptors. Structure–function relationships and effects on haemostasis. Toxicon 45, 1089–1098 (2005).

    Article CAS PubMed Google Scholar

  • Vink, S. Natriuretic peptide drug leads from snake venom. Toxicon 59, 434–445 (2012).

    Article CAS PubMed Google Scholar

  • Sridharan, S., Kini, R. M. & Richards, A. M. Venom natriuretic peptides guide the design of heart failure therapeutics. Pharmacol. Res. 155, 104687 (2020). This review examines the structure–function relationships of venom natriuretic peptides, and discusses peptide engineering strategies for creating therapeutic natriuretic peptide analogues.

    Article CAS PubMed Google Scholar

  • Munawar, A. Snake venom peptides: tools of biodiscovery. Toxins 10, 474 (2018).

    Article CAS PubMed Central Google Scholar

  • Laustsen, A. H., Lomonte, B., Lohse, B., Fernández, J. & Gutiérrez, J. M. Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: identification of key toxin targets for antivenom development. J. Proteom. 119, 126–142 (2015).

    Article CAS Google Scholar

  • Damm, M., Hempel, B. F., Nalbantsoy, A. & Süssmuth, R. D. Comprehensive snake venomics of the Okinawa Habu pit viper, Protobothrops flavoviridis, by complementary mass spectrometry-guided approaches. Molecules 23, 1893 (2018).

    Article PubMed Central Google Scholar

  • Coronado, M. A. et al. Structure of the polypeptide crotamine from the Brazilian rattlesnake Crotalus durissus terrificus. Acta Crystallogr. D 69, 1958–1964 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Falcao, C. B. & Radis-Baptista, G. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology. Peptides 126, 170234 (2020).

    Article PubMed Google Scholar

  • Slotta, K. H. & Fraenkel-Conrat, H. Two active proteins from rattlesnake venom. Nature 13, 213–213 (1938).

    Article Google Scholar

  • Berg, O. G., Gelb, M. H., Tsai, M. D. & Jain, M. K. Interfacial enzymology: the secreted phospholipase A(2)-paradigm. Chem. Rev. 101, 2613–54 (2001).

    Article CAS PubMed Google Scholar

  • Tsai, Y. C., Yu, B. Z., Wang, Y. Z., Chen, J. & Jain, M. K. Desolvation map of the i-face of phospholipase A2. Biochim. Biophys. Acta 1758, 653–665 (2006).

    Article CAS PubMed Google Scholar

  • Bahnson, B. J. Structure, function and interfacial allosterism in phospholipase A2: insight from the anion-assisted dimer. Arch. Biochem. Biophys. 433, 96–106 (2005).

    Article CAS PubMed Google Scholar

  • Scott, D. L. et al. Interfacial catalysis: the mechanism of phospholipase A2. Science 250, 1541–1546 (1990).

    Article CAS PubMed PubMed Central Google Scholar

  • Sérgio, S., Ramos, M. J., Lim, C. & Fernandes, P. A. Relationship between enzyme/substrate properties and enzyme efficiency in hydrolases. ACS Catal. 5, 5877–5887 (2015).

    Article Google Scholar

  • Sousa, S. F. et al. Activation free energy, substrate binding free energy, and enzyme efficiency fall in a very narrow range of values for most enzymes. ACS Catal. 10, 8444–8453 (2020).

    Article CAS Google Scholar

  • Resende, L. M. et al. Structural, enzymatic and pharmacological profiles of AplTX-II — a basic sPLA2 (D49) isolated from the Agkistrodon piscivorus leucostoma snake venom. Int. J. Biol. Macromol. 175, 572–585 (2021).

    Article CAS PubMed Google Scholar

  • Lomonte, B. & Rangel, J. Snake venom Lys49 myotoxins: from phospholipases A(2) to non-enzymatic membrane disruptors. Toxicon 60, 520–30 (2012).

    Article CAS PubMed Google Scholar

  • Fernández, J. et al. Muscle phospholipid hydrolysis by Bothrops asper Asp49 and Lys49 phospholipase A2 myotoxins — distinct mechanisms of action. FEBS J. 280, 3878–3886 (2013).

    Article PubMed Google Scholar

  • Almeida, J. R. et al. CoaTx-II, a new dimeric Lys49 phospholipase A2 from Crotalus oreganus abyssus snake venom with bactericidal potential: insights into its structure and biological roles. Toxicon 120, 147–58 (2016).

    Article CAS PubMed Google Scholar

  • Almeida, J. R. et al. Harnessing snake venom phospholipases A(2) to novel approaches for overcoming antibiotic resistance. Drug Dev. Res. 80, 68–85 (2019).

    Article CAS PubMed Google Scholar

  • Almeida, J. R. et al. A novel synthetic peptide inspired on Lys49 phospholipase A2 from Crotalus oreganus abyssus snake venom active against multidrug-resistant clinical isolates. Eur. J. Med. Chem. 149, 248–256 (2018).

    Article CAS PubMed Google Scholar

  • Kwong, P. D., McDonald, N. Q., Sigler, P. B. & Hendrickson, W. A. Structure of β2-bungarotoxin — potassium channel binding by kunitz modules and targeted phospholipase action. Structure 3, 1109–1119 (1995).

    Article CAS PubMed Google Scholar

  • Rowan, E. G. What does β-bungarotoxin do at the neuromuscular junction? Toxicon 39, 107–118 (2001).

    Article CAS PubMed Google Scholar

  • Doley, R. & Kini, R. M. Protein complexes in snake venom. Cell. Mol. Life Sci. 66, 2851–2871 (2009).

    Article CAS PubMed Google Scholar

  • Kini, R. M. & Koh, C. Y. Metalloproteases affecting blood coagulation, fibrinolysis and platelet aggregation from snake venoms: definition and nomenclature of interaction sites. Toxins 8, 284 (2016).

    Article PubMed Central Google Scholar

  • Sanchez, E. F., Flores-Ortiz, R. J., Alvarenga, V. G. & Eble, J. A. Direct fibrinolytic snake venom metalloproteinases affecting hemostasis: structural, biochemical features and therapeutic potential. Toxins 9, 392 (2017).

    Article PubMed Central Google Scholar

  • Bledzka, K., Smyth, S. S. & Plow, E. F. Integrin αIIbβ3 from discovery to efficacious therapeutic target. Circ. Res. 112, 1189–1200 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Takeda, S., Igarashi, T. & Mori, H. Crystal structure of RVV-X: an example of evolutionary gain of specificity by ADAM proteinases. FEBS Lett. 581, 5859–5864 (2007).

    Article CAS PubMed Google Scholar

  • Lingott, T., Schleberger, C., Gutiérrez, J. M. & Merfort, I. High-resolution crystal structure of the snake venom metalloproteinase BaP1 complexed with a peptidomimetic: Insight into inhibitor binding. Biochemistry 48, 6166–6174 (2009).

    Article CAS PubMed Google Scholar

  • Akao, P. K. et al. Structural studies of BmooMPα-I, a non-hemorrhagic metalloproteinase from Bothrops moojeni venom. Toxicon 55, 361–368 (2010).

    Article CAS PubMed Google Scholar

  • Boldrini-França, J. et al. Beyond hemostasis: a snake venom serine protease with potassium channel blocking and potential antitumor activities. Sci. Rep. 10, 4476 (2020).

    Article PubMed PubMed Central Google Scholar

  • Mackessy, S. P. in Toxins and Hemostasis (eds Kini, R., Clemetson, K., Markland, F., McLane, M. & Morita, T.) 519–557 (Springer, 2010).

  • Vaiyapuri, S., Thiyagarajan, N., Hutchinson, E. G. & Gibbins, J. M. Sequence and phylogenetic analysis of viper venom serine proteases. Bioinformation 8, 763–772 2012).

  • Kurtović, T. et al. VaSP1, catalytically active serine proteinase from Vipera ammodytes ammodytes venom with unconventional active site triad. Toxicon 77, 93–104 (2014).

    Article PubMed Google Scholar

  • Sousa, S. F. et al. Application of quantum mechanics/molecular mechanics methods in the study of enzymatic reaction mechanisms. Wiley Interdisc. Rev. Mol. Sci. 7, 1281 (2017). A review of the computational methods being used to elucidate the snake venom enzymatic reactivity.

    Google Scholar

  • Chung, L. W. et al. The ONIOM method and its applications. Chem. Rev. 115, 5678–5796 (2015).

    Article CAS PubMed Google Scholar

  • Amaro, R. E. & Mulholland, A. J. Multiscale methods in drug design bridge chemical and biological complexity in the search for cures. Nat. Rev. Chem. 2, 148 (2018).

    Article CAS Google Scholar

  • Himo, F. Recent trends in quantum chemical modeling of enzymatic reactions. J. Am. Chem. Soc. 139, 6780–6786 (2017).

    Article CAS PubMed Google Scholar

  • Estevão-Costa, M. I., Sanz-Soler, R., Johanningmeier, B. & Eble, J. A. Snake venom components in medicine: from the symbolic rod of Asclepius to tangible medical research and application. Int. J. Biochem. Cell Biol. 104, 94–113 (2018). This review describes the application of snake venoms in drug discovery.

    Article PubMed Google Scholar

  • Marsh, N. A. Diagnostic uses of snake venom. Haemostasis 31, 211–217 (2001).

    CAS PubMed Google Scholar

  • Francischetti, I. M. B. & Gil, M. R. in Transfusion Medicine and Hemostasis (eds Shaz, B. H., Hillyer, C. D. & Reyes Gil, M.) 969–975 (Elsevier, 2019).

  • Schmidtko, A., Lötsch, J., Freynhagen, R. & Geisslinger, G. Ziconotide for treatment of severe chronic pain. Lancet 375, 1569–1577 (2010).

    Article CAS PubMed Google Scholar

  • Miljanich, G. P. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 11, 3029–3040 (2004).

    Article CAS PubMed Google Scholar

  • Rocha, E. S. M., Beraldo, W. T. & Rosenfeld, G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am. J. Physiol. 156, 261–273 (1949).

    Article Google Scholar

  • Ferreira, S. H. A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. Br. J. Pharmacol. Chemother. 24, 163–169 (1965).

    Article CAS PubMed PubMed Central Google Scholar

  • Ferreira, S. H., Bartelt, D. C. & Greene, L. J. Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry 9, 2583–2593 (1970).

    Article CAS PubMed Google Scholar

  • McCleary, R. J. R. & Kini, R. M. Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads. Toxicon 62, 56–74 (2013).

    Article CAS PubMed Google Scholar

  • Ferreira, S. H., Greene, L. J., Alabaster, V. A., Bakhle, Y. S. & Vane, J. R. Activity of various fractions of bradykinin potentiating factor against angiotensin-I converting enzyme. Nature 225, 379–380 (1970).

    Article CAS PubMed Google Scholar

  • Cushman, D. W. & Ondetti, M. A. History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension 17, 589–592 (1991).

    Article CAS PubMed Google Scholar

  • Bryan, J. From snake venom to ACE inhibitor — the discovery and rise of captopril. Pharm. J. 282, 455–456 (2009).

    Google Scholar

  • Patchett, A. A. The chemistry of enalapril. Br. J. Clin. Pharmacol. 18, 201–207 (1984).

    Article CAS Google Scholar

  • Acharya, K. R., Sturrock, E. D., Riordan, J. F. & Ehlers, M. R. W. ACE revisited: a new target for structure-based drug design. Nat. Rev. Drug Discov. 2, 891–902 (2003).

    Article CAS PubMed PubMed Central Google Scholar

  • Acharya, G., Wang, W., Vavilala, D. T., Mukherji, M. & Lee, C. H. in Advanced Drug Delivery (eds Mitra, A. K., Lee, C. H. & Cheng, K.) 341–364 (Wiley, 2014).

  • Lazarovici, P., Marcinkiewicz, C. & Lelkes, P. I. From snake venom’s disintegrins and C-type lectins to anti-platelet drugs. Toxins 11, 303 (2019).

    Article CAS PubMed Central Google Scholar

  • Topol, E. J., Byzova, T. V. & Plow, E. F. Platelet GPIIb-IIIa blockers. Lancet 353, 227–231 (1999).

    Article CAS PubMed Google Scholar

  • Lang, S. H. et al. Treatment with tirofiban for acute coronary syndrome (ACS): a systematic review and network analysis. Curr. Med. Res. Opin. 28, 351–370 (2012).

    Article CAS PubMed Google Scholar

  • Barrett, J. S. et al. Pharmaco*kinetics and pharmacodynamics of MK-383, a selective nonpeptide platelet glycoprotein-IIb/IIIa receptor antagonist, in healthy men. Clin. Pharmacol. Ther. 56, 377–388 (1994).

    Article CAS PubMed Google Scholar

  • Gan, Z. R., Gould, R. J., Jacobs, J. W., Friedman, P. A. & Polokoff, M. A. Echistatin — a potent platelet-aggregation inhibitor from the venom of the viper Echis carinatus. J. Biol. Chem. 263, 19827–19832 (1988).

    Article CAS PubMed Google Scholar

  • Hartman, G. D. Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors. J. Med. Chem. 35, 4640–4642 (1992).

    Article CAS PubMed Google Scholar

  • Van Drie, J. H. Computer-aided drug design: the next 20 years. J. Comput. Aided Mol. Des. 21, 591–601 (2007).

    Article CAS PubMed Google Scholar

  • Scarborough, R. M. et al. Design of potent and specific integrin antagonists — peptide antagonists with high specificity for glycoprotein-IIb–IIIa. J. Biol. Chem. 268, 1066–1073 (1993).

    Article CAS PubMed Google Scholar

  • Scarborough, R. M. et al. Barbourin — a GPIIb–IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J. Biol. Chem. 266, 9359–9362 (1991).

    Article CAS PubMed Google Scholar

  • Scarborough, R. M. Development of eptifibatide. Am. Heart J. 138, 1093–1104 (1999).

    Article CAS PubMed Google Scholar

  • O’Shea, J. C. & Tcheng, J. E. Eptifibatide: a potent inhibitor of the platelet receptor integrin glycoprotein IIb/IIIa. Expert Opin. Pharmacother. 3, 1199–1210 (2002).

    Article PubMed Google Scholar

  • Masuda, H. Batroxobin accelerated tissue repair via neutrophil extracellular trap regulation and defibrinogenation in a murine ischemic hindlimb model. PLoS ONE 14, e0220898 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • Vu, T. T. Batroxobin binds fibrin with higher affinity and promotes clot expansion to a greater extent than thrombin. J. Biol. Chem. 288, 16862–16871 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Waheed, H., Moin, S. F. & Choudhary, M. I. Snake venom: from deadly toxins to life-saving therapeutics. Curr. Med. Chem. 24, 1874–1891 (2017).

    Article CAS PubMed Google Scholar

  • Gazerani, P. & Cairns, B. E. Venom-based biotoxins as potential analgesics. Expert Rev. Neurother. 14, 1261–1274 (2014).

    Article CAS PubMed Google Scholar

  • Lin, F., Reid, P. F. & Qin, Z.-H. Cobrotoxin could be an effective therapeutic for COVID-19. Acta Pharmacol. Sin. 41, 1258–1260 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Pérez-Peinado, C. et al. Hitchhiking with nature: snake venom peptides to fight cancer and superbugs. Toxins 12, 255 (2020). This review describes the application of snake venoms to treat cancer and infection by antibiotic-resistant microorganisms.

    Article PubMed Central Google Scholar

  • Li, B. X. et al. In vitro assessment and phase I randomized clinical trial of anfibatide, a snake-venom-derived anti-thrombotic agent targeting human platelet GPIbα. Sci. Rep. 11, 11663 (2021).

    Article PubMed PubMed Central Google Scholar

  • Gao, Y. et al. Crystal structure of agkisacucetin, a GPIb-binding snake C-type lectin that inhibits platelet adhesion and aggregation. Proteins 80, 1707–1711 (2012).

    Article CAS PubMed Google Scholar

  • Jackson, S. P. The growing complexity of platelet aggregation. Blood 109, 5087–5095 (2007).

    Article CAS PubMed Google Scholar

  • Guo, Y. et al. Balancing the expression and production of a heterodimeric protein: recombinant agkisacutacin as a novel antithrombotic drug candidate. Sci. Rep. 5, 11730 (2015).

    Article PubMed PubMed Central Google Scholar

  • Tasima, L. J. et al. Crotamine in Crotalus durissus: distribution according to subspecies and geographic origin, in captivity or nature. J. Venom. Anim. Toxins Incl. Trop. Dis. 26, 20190053 (2020).

    Article Google Scholar

  • Moreira, L. A. et al. Acute toxicity, antinociceptive, and anti-inflammatory activities of the orally administered crotamine in mice. Naunyn Schmiedebergs Arch. Pharmacol. 394, 1703–1711 (2021).

    Article CAS PubMed Google Scholar

  • Nicastro, G. et al. Solution structure of crotamine, a Na+ channel affecting toxin from Crotalus durissus terrificus venom. Eur. J. Biochem. 270, 1969–1979 (2003).

    Article CAS PubMed Google Scholar

  • Kerkis, A. et al. Crotamine is a novel cell-penetrating protein from the venom of rattlesnake Crotalus durissus terrificus. FASEB J. 18, 1407–1409 (2004).

    Article CAS PubMed Google Scholar

  • Hayashi, M. A. F. et al. Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization. Toxicon 52, 508–517 (2008).

    Article CAS PubMed Google Scholar

  • Kerkis, A., Hayashi, M. A. F., Yamane, T. & Kerkis, I. Properties of cell penetrating peptides (CPPs). IUBMB Life 58, 7–13 (2006).

    Article CAS PubMed Google Scholar

  • Pereira, A. et al. Crotamine toxicity and efficacy in mouse models of melanoma. Expert Opin. Investig. Drugs 20, 1189–1200 (2011).

    Article CAS PubMed Google Scholar

  • Campeiro, J. D. et al. Oral treatment with a rattlesnake native polypeptide crotamine efficiently inhibits the tumor growth with no potential toxicity for the host animal and with suggestive positive effects on animal metabolic profile. Amino Acids 50, 267–278 (2018). This study demonstrates the promising antitumoral activity of crotamine through oral administration.

    Article CAS PubMed Google Scholar

  • Mancin, A. C. et al. The analgesic activity of crotamine, a neurotoxin from Crotalus durissus terrificus (South American rattlesnake) venom: a biochemical and pharmacological study. Toxicon 36, 1927–37 (1998).

    Article CAS PubMed Google Scholar

  • de Carvalho Porta, L. et al. Biophysical and pharmacological characterization of a full-length synthetic analog of the antitumor polypeptide crotamine. J. Mol. Med. 98, 1561–1571 (2020).

    Article PubMed Google Scholar

  • Mambelli-Lisboa, N. C., Sciani, J. M., Silva, A. R. B. P. D. & Kerkis, I. Co-localization of crotamine with internal membranes and accentuated accumulation in tumor cells. Molecules 23, 968 (2018).

    Article PubMed Central Google Scholar

  • Park, J. Y. et al. Antinociceptive and anti-inflammatory effects of recombinant crotamine in mouse models of pain. Toxins 13, 707 (2021). An in vivo study of the antinociceptive and anti-inflammatory activity of crotamine.

    Article CAS PubMed PubMed Central Google Scholar

  • Schweitz, H., Vigne, P., Moinier, D., Frelin, C. & Lazdunski, M. A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). J. Biol. Chem. 267, 13928–13932 (1992).

    Article CAS PubMed Google Scholar

  • Volpe, M., Rubattu, S. & Burnett, J. Natriuretic peptides in cardiovascular diseases: current use and perspectives. Eur. Heart J. 35, 419–425 (2014).

    Article CAS PubMed Google Scholar

  • O’Connor, C. M. M. et al. Effect of nesiritide in patients with acute decompensated heart failure. N. Engl. J. Med. 365, 32–43 (2011).

    Article PubMed Google Scholar

  • Matsue, Y. et al. Carperitide is associated with increased in-hospital mortality in acute heart failure: a propensity score-matched analysis. J. Card. Fail. 21, 859–864 (2015).

    Article CAS PubMed Google Scholar

  • Ichiki, T., Dzhoyashvili, N. & Burnett, J. C. Jr Natriuretic peptide based therapeutics for heart failure: cenderitide. A novel first-in-class designer natriuretic peptide. Int. J. Cardiol. 281, 166–171 (2019).

    Article PubMed Google Scholar

  • Kawakami, R. et al. A human study to evaluate safety, tolerability, and cyclic GMP activating properties of cenderitide in subjects with stable chronic heart failure. Clin. Pharmacol. Ther. 104, 546–552 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Diochot, S. et al. Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 490, 552–557 (2012). This paper reports the discovery of a black mamba 3FTx that targets acid-sensing ion channels with potent analgesic activity.

    Article CAS PubMed Google Scholar

  • Yoder, N., Yoshioka, C. & Gouaux, E. Gating mechanisms of acid-sensing ion channels. Nature 555, 397–401 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Wemmie, J. A., Taugher, R. J. & Kreple, C. J. Acid-sensing ion channels in pain and disease. Nat. Rev. Neurosci. 14, 461–471 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Schroeder, C. I. et al. Chemical synthesis, 3D structure, and ASIC binding site of the toxin mambalgin-2. Angew. Chem. Int. Ed. 53, 1017–1020 (2014).

    Article CAS Google Scholar

  • Mourier, G. et al. Mambalgin-1 pain-relieving peptide, stepwise solid-phase synthesis, crystal structure, and functional domain for acid-sensing ion channel 1a Inhibition. J. Biol. Chem. 291, 2616–2629 (2015).

    Article PubMed PubMed Central Google Scholar

  • Diochot, S. et al. Analgesic effects of mambalgin peptide inhibitors of acid-sensing ion channels in inflammatory and neuropathic pain. Pain 157, 552–559 (2016).

    Article CAS PubMed Google Scholar

  • Verkest, C. et al. Effects of systemic inhibitors of acid-sensing ion channels 1 (ASIC1) against acute and chronic mechanical allodynia in a rodent model of migraine. Br. J. Pharmacol. 175, 4154–4166 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Sun, D. M. et al. Structural insights into human acid-sensing ion channel 1a inhibition by snake toxin mambalgin1. eLife 9, 57096 (2020). This paper reports structural details of the working mechanism of the analgesic mambalgin-1 in blocking the acid-sensing ion channel 1a.

    Article Google Scholar

  • Salinas, M. et al. Mambalgin-1 pain-relieving peptide locks the hinge between α4 and α5 helices to inhibit rat acid-sensing ion channel 1a. Neuropharmacology 185, 108453 (2021).

    Article CAS PubMed Google Scholar

  • Yacoub, T. Antimicrobials from venomous animals: an overview. Molecules 25, 2402 (2020).

    Article CAS PubMed Central Google Scholar

  • Siniavin, A. E. et al. Snake venom phospholipase A2s exhibit strong virucidal activity against SARS-CoV-2 and inhibit the viral spike glycoprotein interaction with ACE2. Cell Mol. Life Sci. 78, 7777–7794 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Santos-Filho, N. A. et al. Antibacterial activity of the non-cytotoxic peptide (p-BthTX-I)2 and its serum degradation product against multidrug-resistant bacteria. Molecules 22, 1898 (2017).

    Article PubMed Central Google Scholar

  • Freire, M. C. L. C. et al. Non-toxic dimeric peptides derived from the bothropstoxin-I are potent SARS-CoV-2 and papain-like protease inhibitors. Molecules 26, 4896 (2021). A report of snake venom peptides with antiviral activity towards SARS-CoV-2.

    Article CAS PubMed PubMed Central Google Scholar

  • Domling, A. & Gao, L. Chemistry and biology of SARS-CoV-2. Chem 6, 1283–1295 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Yang, J. et al. Freely accessible chemical database resources of compounds for in silico drug discovery. Curr. Med. Chem. 26, 7581–7597 (2019).

    Article CAS PubMed Google Scholar

  • Mendez, D. et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 47, 930–940 (2019).

    Article Google Scholar

  • Sterling, T. & Irwin, J. J. ZINC 15-ligand discovery for everyone. J. Chem. Inf. Model. 55, 2324–2337 (2015).

    Article CAS PubMed PubMed Central Google Scholar

  • van Hilten, N. et al. Virtual compound libraries in computer-assisted drug discovery. J. Chem. Inf. Model. 59, 644–651 (2019).

    Article PubMed Google Scholar

  • Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov. 17, 97–113 (2018).

    Article CAS PubMed Google Scholar

  • Warkentin, T. E., Greinacher, A. & Koster, A. Bivalirudin. Thromb. Haemost. 99, 830–9 (2008).

    Article CAS PubMed Google Scholar

  • Barnett, A. Exenatide. Expert Opin. Pharmacother. 8, 2593–2608 (2007).

    Article CAS PubMed Google Scholar

  • King, G. F. in Venoms to Drugs: Venom as a Source for the Development of Human Therapeutics (ed. King, G. F.) 37–79 (Royal Society of Chemistry, 2015).

  • Kini, R. M. Toxins in thrombosis and haemostasis: potential beyond imagination. J. Thromb. Haemost. 9, 195–208 (2011).

    Article CAS PubMed Google Scholar

  • Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article CAS PubMed Google Scholar

  • Kini, R. M. & Evans, H. J. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon 27, 613–35 (1989).

    Article CAS PubMed Google Scholar

  • Kini, R. M. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 42, 827–840 (2003).

    Article CAS PubMed Google Scholar

  • Croll, T. I., Sammito, M. D., Kryshtafovych, A. & Read, R. J. Evaluation of template-based modeling in CASP13. Proteins Struct. Funct. Bioinform. 87, 1113–1127 (2019).

    Article CAS Google Scholar

  • Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Das, R. & Baker, D. Macromolecular modeling with Rosetta. Annu. Rev. Biochem. 77, 363–382 (2008).

    Article CAS PubMed Google Scholar

  • Wang, Y., Virtanen, J., Xue, Z. & Zhang, Y. I-TASSER-MR: automated molecular replacement for distant-hom*ology proteins using iterative fragment assembly and progressive sequence truncation. Nucleic Acids Res. 45, 429–434 (2017).

    Article Google Scholar

  • Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 54, 5.6.1–5.6.37 (2020).

    Google Scholar

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Lensink, M. F., Nadzirin, N., Velankar, S. & Wodak, S. J. Modeling protein–protein, protein–peptide, and protein–oligosaccharide complexes: CAPRI. Proteins 88, 916–938 (2020).

    Article CAS PubMed Google Scholar

  • Moreira, I. S., Fernandes, P. A. & Ramos, M. J. Protein–protein docking dealing with the unknown. J. Comput. Chem. 31, 317–342 (2010).

    CAS PubMed Google Scholar

  • Simões, I. C. M. et al. Properties that rank protein–protein docking poses with high accuracy. Phys. Chem. Chem. Phys. 20, 20927–20942 (2018). A promising computational method to predict toxin–target complexation structures.

    Article PubMed Google Scholar

  • Moreira, I. S., Martins, J. M., Coimbra, J. T. S., Ramos, M. J. & Fernandes, P. A. A new scoring function for protein–protein docking that identifies native structures with unprecedented accuracy. Phys. Chem. Chem. Phys. 17, 2378–2387 (2015).

    Article CAS PubMed Google Scholar

  • Quignot, C. et al. InterEvDock2: an expanded server for protein docking using evolutionary and biological information from hom*ology models and multimeric inputs. Nucleic Acids Res. 46, 408–416 (2018).

    Article Google Scholar

  • Kozakov, D. et al. The ClusPro web server for protein-protein docking. Nat. Protoc. 12, 255–278 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Park, T., Baek, M., Lee, H. & Seok, C. GalaxyTongDock: symmetric and asymmetric ab initio protein–protein docking web server with improved energy parameters. J. Comput. Chem. 40, 2413–2417 (2019).

    Article CAS PubMed Google Scholar

  • Zundert, G. C. P. et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016).

    Article PubMed Google Scholar

  • Moreira, I. S., Fernandes, P. A. & Ramos, M. J. Hot spots — a review of the protein–protein interface determinant amino-acid residues. Proteins Struct. Funct. Bioinform. 68, 803–812 (2007).

    Article CAS Google Scholar

  • Martins, S. A. et al. Computational alanine scanning mutagenesis: MM-PBSA vs TI. J. Chem. Theory Comput. 9, 1311–1319 (2013).

    Article CAS PubMed Google Scholar

  • Simões, I. C. M., Costa, I. P. D., Coimbra, J. T. S., Ramos, M. J. & Fernandes, P. A. New parameters for higher accuracy in the computation of binding free energy differences upon alanine scanning mutagenesis on protein–protein interfaces. J. Chem. Inf. Model. 57, 60–72 (2017). An accurate computational method to identify toxin–target binding regions and binding epitopes.

    Article PubMed Google Scholar

  • Geng, C., Xue, L. C., Roel-Touris, J. & Bonvin, A. M. J. J. Finding the ΔΔG spot: are predictors of binding affinity changes upon mutations in protein–protein interactions ready for it? Wiley Interdiscip. Rev. Mol. Sci. 9, 1410 (2019).

    Google Scholar

  • Barlow, K. A. et al. Flex ddG: Rosetta ensemble-based estimation of changes in protein–protein binding affinity upon mutation. J. Phys. Chem. B 122, 5389–5399 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Kortemme, T. & Baker, D. A simple physical model for binding energy hot spots in protein–protein complexes. Proc. Natl Acad. Sci. USA 99, 14116–21 (2002).

    Article CAS PubMed PubMed Central Google Scholar

  • Sribar, J. et al. The neurotoxic secreted phospholipase A2 from the Vipera a. ammodytes venom targets cytochrome c oxidase in neuronal mitochondria. Sci. Rep. 9, 283 (2019).

    Article PubMed PubMed Central Google Scholar

  • Meenakshisundaram, R., Sweni, S. & Thirumalaikolundusubramanian, P. Hypothesis of snake and insect venoms against human immunodeficiency virus: a review. AIDS Res. Ther. 6, 25 (2009).

    Article PubMed PubMed Central Google Scholar

  • Fenard, D. et al. Secreted phospholipases A2, a new class of HIV inhibitors that block virus entry into host cells. J. Clin. Invest. 104, 611–618 (1999).

    Article CAS PubMed PubMed Central Google Scholar

  • Muller, V. D. M. et al. Crotoxin and phospholipases A2 from Crotalus durissus terrificus showed antiviral activity against dengue and yellow fever viruses. Toxicon 59, 507–15 (2012).

    Article CAS PubMed Google Scholar

  • Ahmed, N. K., Tennant, K. D., Markland, F. S. & LACZ, J. P. Biochemical characteristics of fibrolase, a fibrinolytic protease from snake venom. Haemostasis 20, 147–154 (1990).

    CAS PubMed Google Scholar

  • Boldrini-Franca, J., Pinheiro-Junior, E. L. & Arantes, E. C. Functional and biological insights of rCollinein-1, a recombinant serine protease from Crotalus durissus collilineatus. J. Venom. Anim. Toxins Incl. Trop. Dis. 25, 147118 (2019).

    Article Google Scholar

  • Funk, C., Gmür, J., Herold, R. & Straub, P. W. Reptilase-R — a new reagent in blood coagulation. Br. J. Haematol. 21, 43–52 (1971).

    Article CAS PubMed Google Scholar

  • Graziano, F. et al. Autologous fibrin sealant (Vivostat(R)) in the neurosurgical practice. Part I: intracranial surgical procedure. Surg. Neurol. Int. 6, 77 (2015).

    Article PubMed PubMed Central Google Scholar

  • Graziano, F., Maugeri, R., Basile, L., Meccio, F. & Iacopino, D. G. Aulogous fibrin sealant (Vivostat(R)) in the neurosurgical practice. Part II: vertebro-spinal procedures. Surg. Neurol. Int. 7, 77–82 (2016).

    Article Google Scholar

  • Koivula, K., Rondinelli, S. & Nasman, J. The three-finger toxin MTα is a selective α2B-adrenoceptor antagonist. Toxicon 56, 440–447 (2010).

    Article CAS PubMed Google Scholar

  • Barnwal, B. et al. Ringhalexin from Hemachatus haemachatus: a novel inhibitor of extrinsic tenase complex. Sci. Rep. 6, 25935 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  • Banerjee, Y. et al. Biophysical characterization of anticoagulant hemextin AB complex from the venom of snake Hemachatus haemachatus. Biophys. J. 93, 3963–76 (2007).

    Article CAS PubMed PubMed Central Google Scholar

  • Chanda, C., Sarkar, A., Sistla, S. & Chakrabarty, D. Anti-platelet activity of a three-finger toxin (3FTx) from Indian monocled cobra (Naja kaouthia) venom. Biochem. Biophys. Res. Commun. 441, 550–554 (2013).

    Article CAS PubMed Google Scholar

  • Fernandez-Gomez, R. et al. Growth inhibition of Trypanosoma cruzi and Leishmania donovani infantum by different snake venoms — preliminary identification of proteins from Cerastes cerastes venom which interact with the parasites. Toxicon 32, 875–882 (1994).

    Article CAS PubMed Google Scholar

  • Costa Torres, A. F. et al. Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: phospholipase A2 and l-amino acid oxidase. Toxicon 55, 795–804 (2010).

    Article PubMed Google Scholar

  • Sakurai, Y. et al. Anticoagulant activity of M-LAO, l-amino acid oxidase purified from Agkistrodon halys blomhoffii, through selective inhibition of factor IX. Biochim. Biophys. Acta 1649, 51–57 (2003).

    Article CAS PubMed Google Scholar

  • Adade, C. M. et al. Crovirin, a snake venom cysteine-rich secretory protein (CRISP) with promising activity against trypanosomes and Leishmania. PLoS Negl. Trop. Dis. 8, 3252 (2014).

    Article Google Scholar

  • Badari, J. C., Díaz-Roa, A., Rocha, M. M. T., Mendonça, R. Z. & Silva Junior, P. I. D. Patagonin-CRISP: antimicrobial activity and source of antimicrobial molecules in Duvernoy’s gland secretion (Philodryas patagoniensis snake). Front. Pharmacol. 11, 586705 (2021).

    Article PubMed PubMed Central Google Scholar

  • Tadokoro, T., Modahl, C. M., Maenaka, K. & Aoki-Shioi, N. Cysteine-rich secretory proteins (CRISPs) from venomous snakes: an overview of the functional diversity in a large and underappreciated superfamily. Toxins 12, 175 (2020).

    Article CAS PubMed Central Google Scholar

  • Assafim, M. et al. Exploiting the antithrombotic effect of the (pro)thrombin inhibitor bothrojaracin. Toxicon 119, 46–51 (2016).

    Article CAS PubMed Google Scholar

  • Shen, D.-K. et al. Ca2+-induced binding of anticoagulation factor II from the venom of Agkistrodon acutus with factor IX. Biopolymers 97, 818–824 (2012).

    Article CAS PubMed Google Scholar

  • Zhang, Y. et al. Anticoagulation factor I, a snaclec (snake C-type lectin) from Agkistrodon acutus venom binds to FIX as well as FX: Ca2+ induced binding data. Toxicon 59, 718–723 (2012).

    Article CAS PubMed Google Scholar

  • Rabelo, L. F. G. et al. Alternagin-C, a disintegrin-like protein from Bothrops alternatus venom, attenuates inflammation and angiogenesis and stimulates collagen deposition of sponge-induced fibrovascular tissue in mice. Int. J. Biol. Macromol. 140, 653–660 (2019).

    Article CAS PubMed Google Scholar

  • Gilchrist, I. C. Platelet glycoprotein IIb/IIIa inhibitors in percutaneous coronary intervention: focus on the pharmaco*kinetic–pharmacodynamic relationships of eptifibatide. Clin. Pharmaco*kinet. 42, 703–720 (2003).

    Article CAS PubMed Google Scholar

  • Lucena, S. E. et al. Anti-invasive and anti-adhesive activities of a recombinant disintegrin, r-viridistatin 2, derived from the Prairie rattlesnake (Crotalus viridis viridis). Toxicon 60, 31–9 (2012).

    Article CAS PubMed Google Scholar

  • Kuo, Y. J., Chung, C. H. & Huang, T. F. From discovery of snake venom disintegrins to a safer therapeutic antithrombotic agent. Toxins 11, 372 (2019).

    Article CAS PubMed Central Google Scholar

  • Cesar, P. H. S., Braga, M. A., Trento, M. V. C., Menaldo, D. L. & Marcussi, S. Snake venom disintegrins: an overview of their interaction with integrins. Curr. Drug Targets 20, 465–477 (2019).

    Article PubMed Google Scholar

  • Calvete, J. J. The continuing saga of snake venom disintegrins. Toxicon 62, 40–49 (2013).

    Article CAS PubMed Google Scholar

  • Ciolek, J. et al. Green mamba peptide targets type-2 vasopressin receptor against polycystic kidney disease. Proc. Natl Acad. Sci. USA 114, 7154–7159 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Colombo, A. L. et al. Effects of the natural peptide crotamine from a South American rattlesnake on Candida auris, an emergent multidrug antifungal resistant human pathogen. Biomolecules 9, 205 (2019).

    Article PubMed Central Google Scholar

  • El Chamy Maluf, S. et al. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides 78, 11–16 (2016).

    Article CAS PubMed Google Scholar

  • Dal Mas, C. et al. Anthelmintic effects of a cationic toxin from a South American rattlesnake venom. Toxicon 116, 49–55 (2016).

    Article CAS PubMed Google Scholar

  • Macedo, S. R. A. et al. Biodegradable microparticles containing crotamine isolated from Crotalus durissus terrificus display antileishmanial activity in vitro. Pharmacology 95, 78–86 (2015).

    Article CAS PubMed Google Scholar

  • Mackessy S. P. (ed.) Handbook of Venoms and Toxins of Reptiles (CRC, 2021). This book describes the composition, bioactivity, pathophysiology and medicinal applications of snake venom.

  • Salvador, G. H. M., dos Santos, J. I., Lomonte, B. & Fontes, M. R. M. Crystal structure of a phospholipase A2 from Bothrops asper venom: insights into a new putative “myotoxic cluster”. Biochimie 133, 95–102 (2017).

    Article CAS PubMed Google Scholar

  • Murakami, M. T. et al. Inhibition of myotoxic activity of Bothrops asper myotoxin II by the anti-trypanosomal drug suramin. J. Mol. Biol. 350, 416–426 (2005).

    Article CAS PubMed Google Scholar

  • Kalita, B., Mackessy, S. P. & Mukherjee, A. K. Proteomic analysis reveals geographic variation in venom composition of Russell’s viper in the Indian subcontinent: implications for clinical manifestations post-envenomation and antivenom treatment. Expert Rev. Proteomics 15, 837–849 (2018).

    Article CAS PubMed Google Scholar

  • Favaloro, E. J. The Russell viper venom time (RVVT) test for investigation of lupus anticoagulant (LA). Am. J. Hematol. 94, 1290–1296 (2019).

    Article PubMed Google Scholar

  • Chen, H.-S., Tsai, H.-Y., Wang, Y.-M. & Tsai, I.-H. P-III hemorrhagic metalloproteinases from Russell’s viper venom: cloning, characterization, phylogenetic and functional site analyses. Biochimie 90, 1486–1498 (2008).

    Article CAS PubMed Google Scholar

  • Nakayama, D., Ben Ammar, Y., Miyata, T. & Takeda, S. Structural basis of coagulation factor V recognition for cleavage by RVV-V. FEBS Lett. 585, 3020–3025 (2011).

    Article CAS PubMed Google Scholar

  • You, W.-K. et al. Functional characterization of recombinant batroxobin, a snake venom thrombin-like enzyme, expressed from Pichia pastoris. FEBS Lett. 571, 67–73 (2004).

    Article CAS PubMed Google Scholar

  • Sousa, L. F. et al. Functional proteomic analyses of Bothrops atrox venom reveals phenotypes associated with habitat variation in the Amazon. J. Proteom. 159, 32–46 (2017).

    Article CAS Google Scholar

  • Núñez, V. et al. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. J. Proteom. 73, 57–78 (2009).

    Article Google Scholar

  • Calvete, J. J. et al. Snake population venomics and antivenomics of Bothrops atrox: paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management. J. Proteom. 74, 510–527 (2011).

    Article CAS Google Scholar

  • Kohlhoff, M. et al. Exploring the proteomes of the venoms of the Peruvian pit vipers Bothrops atrox, B. barnetti and B. pictus. J. Proteom. 75, 2181–2195 (2012).

    Article CAS Google Scholar

  • Hatakeyama, D. M. et al. Venom complexity of Bothrops atrox (common lancehead) siblings. J. Venom. Anim. Toxins Incl. Trop. Dis. 26, 20200018 (2020).

    Article Google Scholar

  • Wallnoefer, H. G., Lingott, T., Gutiérrez, J. M., Merfort, I. & Liedl, K. R. Backbone flexibility controls the activity and specificity of a protein–protein interface: specificity in snake venom metalloproteases. J. Am. Chem. Soc. 132, 10330–10337 (2010).

    Article CAS PubMed Google Scholar

  • Camacho, E., Escalante, T., Remans, K., Gutiérrez, J. M. & Rucavado, A. Site mutation of residues in a loop surrounding the active site of a PI snake venom metalloproteinase abrogates its hemorrhagic activity. Biochem. Biophys. Res. Commun. 512, 859–863 (2019). This study provides insight into the molecular-level mechanism of physiological substrate recognition by SVMPs.

    Article CAS PubMed Google Scholar

  • The chemistry of snake venom and its medicinal potential (2024)

    FAQs

    What is the chemistry behind snake venom? ›

    Snake venoms are complex mixtures of enzymes and proteins of various sizes, amines, lipids, nucleosides, and carbohydrates. Venoms also contain various metal ions that are presumed to act as cofactors and include sodium, calcium, potassium, magnesium, and zinc.

    What is the biochemistry of snake venom? ›

    Snake venom is a complex mixture of a wide variety of biologically active molecules, such as enzymes and non-enzymatic proteins/peptides, which correspond to 90–95% of their dry weight [12].

    What does snake venom do to human blood? ›

    They can destroy the outer membrane of capillary vessels, causing internal bleeding. In some cases they can also activate the blood clotting system, causing clots around the circulatory system. These can then block blood vessels and induce a stroke or heart attack.

    What do scientists do with snake venom? ›

    The studies of snake venoms and toxins have focused on one or more of the following objectives: (i) to determine the mode and mechanism of action of the toxins; (ii) to find ways and means to neutralize the toxicity and adverse effects of snake bites; (iii) to develop specific research tools that are useful in ...

    Can snake venom be used as medicine? ›

    Snake venoms have been used in traditional medicine for many thousands of years. Thousands of years ago, animal venoms were the basis of preparations meant to treat smallpox and leprosy and heal wounds.

    Why is snake venom so potent? ›

    Venom contains more than 20 different compounds, which are mostly proteins and polypeptides. The complex mixture of proteins, enzymes, and various other substances has toxic and lethal properties.

    What is the pH of snake venom? ›

    Optimum pH studies of the snake venom phosphatases showed that the acid phosphatases of the snake venoms had their highest activity in the range of pH 4–5. The alkaline phosphatases of the snake venoms had their optimum pH at 9. 10.

    How long does snake venom last in the body? ›

    Ideally, you'll reach medical help within 30 minutes of being bitten. If the bite is left untreated, your bodily functions will break down over a period of 2 or 3 days and the bite may result in severe organ damage or death.

    What animal is immune to snake venom? ›

    The hedgehog (Erinaceidae), the mongoose (Herpestidae), the honey badger (Mellivora capensis) and the opossum are known to be immune to a dose of snake venom.

    What are the benefits of snake venom in human life? ›

    In fact, the proteins in snake venom has been used to treat many conditions. Some examples are cancer, pain, high blood pressure, heart attacks, strokes, Alzheimer's disease, and Parkinson's disease. The venom of other animals, such as spiders and scorpions, has also been used to develop important drug treatments.

    Can humans develop immunity to snake venom? ›

    Immunity was also reported in a reptile handler bitten by king cobra “Ophiophagus Hannah.”[12] Repeated poisonous snakes bites, though believed to render the individuals immune and reduce fatality of subsequent bites, Parrish and Pollard[13] analyzed the effect of repeated bites in 14 patients and concluded that bites ...

    Is snake venom good for wrinkles? ›

    This revolutionary anti-wrinkle treatment is made with polypeptide, an extract of snake venom. Clinical trials prove that this substance causes a significant reduction of wrinkles. Its action is further reinforced by caring active substances such as collagen, elastin, retinol, Q-10 and SPF 15 sun protection.

    What drugs are made from snake venom? ›

    Batroxobin and cobratide are native compounds purified from snake venoms, desirudin is a recombinant molecule, and the other drugs (bivalirudin, captopril, enalapril, eptifibatide, exenatide, tirofiban, and ziconotide) are synthetic molecules ( Table 1 ).

    What is the chemistry of snake venom? ›

    Most snake venoms contain proteolytic enzymes. These enzymes catalyze the digestion of tissue proteins and peptides into amino acids. Proteolytic enzymes can be classified into two major groups: metalloproteases and serine proteases, which affect the hemostatic system through different mechanisms [29].

    What are the ancient uses of snake venom? ›

    One of its first uses was as coating for arrow tips, used to slow or kill enemies. Scythian warriors used this tactic two thousand years ago - although venom was not the only thing coating the arrows. The soldiers are believed to have concocted a horrifying mixture of viper venom, human blood and animal faeces.

    What is the principle of snake venom? ›

    Snake venoms are complex mixtures containing many different biologically active proteins and peptides. A number of these proteins interact with components of the human hemostatic system. This review is focused on those venom constituents which affect the blood coagulation pathway, endothelial cells, and platelets.

    What is snake venom's poison actually? ›

    Despite the existence of hundreds of venoms, nearly all snake venoms fall into one of three categories, depending on how they affect us: neurotoxins, cytotoxins or myotoxins. Neurotoxins are common to the Elapidae family of snakes, which include cobras, mambas, coral snakes, and copperheads.

    What are the ingredients in snake venom? ›

    Most snake venoms contain proteolytic enzymes. These enzymes catalyze the digestion of tissue proteins and peptides into amino acids. Proteolytic enzymes can be classified into two major groups: metalloproteases and serine proteases, which affect the hemostatic system through different mechanisms [29].

    What enzymes are in snake venom? ›

    Snake venoms are co*cktails of enzymes and non-enzymatic proteins used for both the immobilization and digestion of prey. The most common snake venom enzymes include acetylcholinesterases, l-amino acid oxidases, serine proteinases, metalloproteinases and phospholipases A(2) .

    Top Articles
    Ethereum Price Prediction 2024
    How Often Should You Vacuum? Here's What the Pros Say
    $4,500,000 - 645 Matanzas CT, Fort Myers Beach, FL, 33931, William Raveis Real Estate, Mortgage, and Insurance
    Dollywood's Smoky Mountain Christmas - Pigeon Forge, TN
    Stadium Seats Near Me
    Black Gelato Strain Allbud
    Northern Whooping Crane Festival highlights conservation and collaboration in Fort Smith, N.W.T. | CBC News
    Victoria Secret Comenity Easy Pay
    Call of Duty: NEXT Event Intel, How to Watch, and Tune In Rewards
    How to Watch Braves vs. Dodgers: TV Channel & Live Stream - September 15
    Which aspects are important in sales |#1 Prospection
    Cooking Fever Wiki
    Summoner Class Calamity Guide
    Darksteel Plate Deepwoken
    Lima Funeral Home Bristol Ri Obituaries
    Who called you from 6466062860 (+16466062860) ?
    Craigslist Farm And Garden Tallahassee Florida
    Cpt 90677 Reimbursem*nt 2023
    Dignity Nfuse
    Pizza Hut In Dinuba
    Tamilyogi Proxy
    Sizewise Stat Login
    Never Give Up Quotes to Keep You Going
    College Basketball Picks: NCAAB Picks Against The Spread | Pickswise
    Like Some Annoyed Drivers Wsj Crossword
    Weve Got You Surrounded Meme
    Jeff Nippard Push Pull Program Pdf
    Integer Division Matlab
    Netwerk van %naam%, analyse van %nb_relaties% relaties
    Giantbodybuilder.com
    O'reilly's In Monroe Georgia
    Worthington Industries Red Jacket
    Kristy Ann Spillane
    Napa Autocare Locator
    Shiftwizard Login Johnston
    Lil Durk's Brother DThang Killed in Harvey, Illinois, ME Confirms
    Sitting Human Silhouette Demonologist
    Kips Sunshine Kwik Lube
    Msnl Seeds
    Craiglist Hollywood
    The TBM 930 Is Another Daher Masterpiece
    Prior Authorization Requirements for Health Insurance Marketplace
    2700 Yen To Usd
    Hkx File Compatibility Check Skyrim/Sse
    Linkbuilding uitbesteden
    Lawrence E. Moon Funeral Home | Flint, Michigan
    R/Gnv
    Santa Ana Immigration Court Webex
    Pilot Travel Center Portersville Photos
    Lsreg Att
    Access One Ummc
    Latest Posts
    Article information

    Author: Frankie Dare

    Last Updated:

    Views: 6184

    Rating: 4.2 / 5 (53 voted)

    Reviews: 92% of readers found this page helpful

    Author information

    Name: Frankie Dare

    Birthday: 2000-01-27

    Address: Suite 313 45115 Caridad Freeway, Port Barabaraville, MS 66713

    Phone: +3769542039359

    Job: Sales Manager

    Hobby: Baton twirling, Stand-up comedy, Leather crafting, Rugby, tabletop games, Jigsaw puzzles, Air sports

    Introduction: My name is Frankie Dare, I am a funny, beautiful, proud, fair, pleasant, cheerful, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.