Sodium Benzoate—Harmfulness and Potential Use in Therapies for Disorders Related to the Nervous System: A Review (2024)

1. Hartmann S., Klaschka U. Interested Consumers’ Awareness of Harmful Chemicals in Everyday Products. Environ. Sci. Eur. 2017;29:29. doi:10.1186/s12302-017-0127-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Hartmann S., Klaschka U. Do Consumers Care about Substances of Very High Concern in Articles? Environ. Sci. Eur. 2018;30:29. doi:10.1186/s12302-018-0153-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Asioli D., Aschemann-Witzel J., Caputo V., Vecchio R., Annunziata A., Næs T., Varela P. Making Sense of the “Clean Label” Trends: A Review of Consumer Food Choice Behavior and Discussion of Industry Implications. Food Res. Int. 2017;99:58–71. doi:10.1016/j.foodres.2017.07.022. [PubMed] [CrossRef] [Google Scholar]

4. Cegiełka A. “Clean Label” as One of the Leading Trends in the Meat Industry in the World and in Poland—A Review. Rocz. Panstw. Zakl. Hig. 2020;71:43–55. doi:10.32394/rpzh.2020.0098. [PubMed] [CrossRef] [Google Scholar]

5. Cheung T.T.L., Junghans A.F., Dijksterhuis G.B., Kroese F., Johansson P., Hall L., De Ridder D.T.D. Consumers’ Choice-Blindness to Ingredient Information. Appetite. 2016;106:2–12. doi:10.1016/j.appet.2015.09.022. [PubMed] [CrossRef] [Google Scholar]

6. Davidson P.M., Taylor T.M., David J.R.D. Antimicrobials in Food. 4th ed. CRC Press; Boca Raton, FL, USA: 2021. [Google Scholar]

7. CFR—Code of Federal Regulations Title 21. [(accessed on 14 November 2021)]; Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=184.1733

8. Lennerz B., Vafai S.B., Delaney N.F., Clish C.B., Deik A.A., Pierce K.A., Ludwig D.S., Mootha V.K. Effects of Sodium Benzoate, a Widely Used Food Preservative, on Glucose Homeostasis and Metabolic Profiles in Humans. Mol. Genet. Metab. 2015;114:73–79. doi:10.1016/j.ymgme.2014.11.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Chen Y., Ma Y., Ma W. Pharmaco*kinetics and Bioavailability of Cinnamic Acid after Oral Administration of Ramulus Cinnamomi in Rats. Eur. J. Drug Metab. Pharmaco*kinet. 2009;34:51–56. doi:10.1007/BF03191384. [PubMed] [CrossRef] [Google Scholar]

10. Zhao K., Chen Y., Hong S., Yang Y., Xu J., Yang H., Zhu L., Liu M., Xie Q., Tang X., et al. Characteristics of β-Oxidative and Reductive Metabolism on the Acyl Side Chain of Cinnamic Acid and Its Analogues in Rats. Acta Pharmacol. Sin. 2019;40:1106–1118. doi:10.1038/s41401-019-0218-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Shahmohammadi M., Javadi M., Nassiri-Asl M. An Overview on the Effects of Sodium Benzoate as a Preservative in Food Products. Biotechnol. Health Sci. 2016;3:7–11. doi:10.17795/bhs-35084. [CrossRef] [Google Scholar]

12. BUPHENYL® (Sodium Phenylbutyrate) Tablets BUPHENYL® (Sodium Phenylbutyrate) Powder. [(accessed on 10 February 2022)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020572s016,020573s015lbl.pdf

13. AMMONUL. [(accessed on 10 February 2022)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2005/020645lbl.pdf

14. Weber R.W., Hoffman M., Raine D.A., Nelson H.S. Incidence of Bronchoconstriction Due to Aspirin, Azo Dyes, Non-Azo Dyes, and Preservatives in a Population of Perennial Asthmatics. J. Allergy Clin. Immunol. 1979;64:32–37. doi:10.1016/0091-6749(79)90080-0. [PubMed] [CrossRef] [Google Scholar]

15. Settipane G.A. Aspirin and Allergic Diseases: A Review. Am. J. Med. 1983;74:102–109. doi:10.1016/0002-9343(83)90537-5. [PubMed] [CrossRef] [Google Scholar]

16. Balatsinou L., Di Gioacchino G., Sabatino G., Cavallucci E., Caruso R., Gabriele E., Ramondo S., Di Giampaolo L., Verna N., Di Gioacchino M. Asthma Worsened by Benzoate Contained in Some Antiasthmatic Drugs. Int. J. Immunopathol. Pharmacol. 2004;17:225–226. doi:10.1177/039463200401700215. [PubMed] [CrossRef] [Google Scholar]

17. Piper J.D., Piper P.W. Benzoate and Sorbate Salts: A Systematic Review of the Potential Hazards of These Invaluable Preservatives and the Expanding Spectrum of Clinical Uses for Sodium Benzoate. Compr. Rev. Food Sci. Food Saf. 2017;16:868–880. doi:10.1111/1541-4337.12284. [PubMed] [CrossRef] [Google Scholar]

18. Zengin N., Yüzbaşıoğlu D., Unal F., Yılmaz S., Aksoy H. The Evaluation of the Genotoxicity of Two Food Preservatives: Sodium Benzoate and Potassium Benzoate. Food Chem. Toxicol. 2011;49:763–769. doi:10.1016/j.fct.2010.11.040. [PubMed] [CrossRef] [Google Scholar]

19. Pongsavee M. Effect of Sodium Benzoate Preservative on Micronucleus Induction, Chromosome Break, and Ala40Thr Superoxide Dismutase Gene Mutation in Lymphocytes. BioMed Res. Int. 2015;2015:103512. doi:10.1155/2015/103512. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Chatterjee S. Chapter Two—Oxidative Stress, Inflammation, and Disease. In: Dziubla T., Butterfield D.A., editors. Oxidative Stress and Biomaterials. Academic Press; Cambridge, MA, USA: 2016. pp. 35–58. [Google Scholar]

21. Khansari N., Shakiba Y., Mahmoudi M. Chronic Inflammation and Oxidative Stress as a Major Cause of Age-Related Diseases and Cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009;3:73–80. doi:10.2174/187221309787158371. [PubMed] [CrossRef] [Google Scholar]

22. Pole A., Dimri M., Dimri G. Oxidative Stress, Cellular Senescence and Ageing. AIMS Mol. Sci. 2016;3:300–324. doi:10.3934/molsci.2016.3.300. [CrossRef] [Google Scholar]

23. Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging. 2018;13:757–772. doi:10.2147/CIA.S158513. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Yetuk G., Pandir D., Bas H. Protective Role of Catechin and Quercetin in Sodium Benzoate-Induced Lipid Peroxidation and the Antioxidant System in Human Erythrocytes In Vitro. Sci. World J. 2014;2014:e874824. doi:10.1155/2014/874824. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. El-Shennawy L., Kamel M.A.E., Khalaf A.H.Y., Yousef M.I. Dose-Dependent Reproductive Toxicity of Sodium Benzoate in Male Rats: Inflammation, Oxidative Stress and Apoptosis. Reprod. Toxicol. 2020;98:92–98. doi:10.1016/j.reprotox.2020.08.014. [PubMed] [CrossRef] [Google Scholar]

26. Sabour A., Ibrahim I.R. Effect of Sodium Benzoate on Corticosterone Hormone Level, Oxidative Stress Indicators and Electrolytes in Immature Male Rats. Sci. J. Med. Res. 2019;3:101–106. doi:10.37623/SJMR.2019.31104. [CrossRef] [Google Scholar]

27. Olofinnade A.T., Onaolapo A.Y., Onaolapo O.J., Olowe O.A. The Potential Toxicity of Food-Added Sodium Benzoate in Mice Is Concentration-Dependent. Toxicol. Res. 2021;10:561–569. doi:10.1093/toxres/tfab024. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Khan I.S., Dar K.B., Ganie S.A., Ali M.N. Toxicological Impact of Sodium Benzoate on Inflammatory Cytokines, Oxidative Stress and Biochemical Markers in Male Wistar Rats. Drug Chem. Toxicol. 2020:1–10. doi:10.1080/01480545.2020.1825472. [PubMed] [CrossRef] [Google Scholar]

29. Yadav A., Kumar A., Das M., Tripathi A. Sodium Benzoate, a Food Preservative, Affects the Functional and Activation Status of Splenocytes at Non Cytotoxic Dose. Food Chem. Toxicol. 2016;88:40–47. doi:10.1016/j.fct.2015.12.016. [PubMed] [CrossRef] [Google Scholar]

30. Tsay H.-J., Wang Y.-H., Chen W.-L., Huang M.-Y., Chen Y.-H. Treatment with Sodium Benzoate Leads to Malformation of Zebrafish Larvae. Neurotoxicol. Teratol. 2007;29:562–569. doi:10.1016/j.ntt.2007.05.001. [PubMed] [CrossRef] [Google Scholar]

31. Chen Q., Huang N.-N., Huang J.-T., Chen S., Fan J., Li C., Xie F.-K. Sodium Benzoate Exposure Downregulates the Expression of Tyrosine Hydroxylase and Dopamine Transporter in Dopaminergic Neurons in Developing Zebrafish. Birth Defects Res. B Dev. Reprod. Toxicol. 2009;86:85–91. doi:10.1002/bdrb.20187. [PubMed] [CrossRef] [Google Scholar]

32. Saatci C., Erdem Y., Bayramov R., Akalın H., Tascioglu N., Ozkul Y. Effect of Sodium Benzoate on DNA Breakage, Micronucleus Formation and Mitotic Index in Peripheral Blood of Pregnant Rats and Their Newborns. Biotechnol. Biotechnol. Equip. 2016;30:1179–1183. doi:10.1080/13102818.2016.1224979. [CrossRef] [Google Scholar]

33. Taheri S.H., Sohrabi D. Teratogenic Effects of Sodium Benzoate on the Rat Fetus. J. Adv. Med. Biomed. Res. 2002;10:1–4. [Google Scholar]

34. Ajpt E. Fetal Malformations Due to Long Term Consumption of Sodium Benzoate in Pregnant Balb/c Mice. Asian J. Pharmacol. Toxicol. 2014;2:1–7. [Google Scholar]

35. Afshar M., Moallem S.A., Khayatzadeh J., Shahsavan M. Teratogenic Effects of Long Term Consumption of Potassium Benzoate on Eye Development in Balb/c Fetal Mice. Iran J. Basic Med. Sci. 2013;16:593–598. [PMC free article] [PubMed] [Google Scholar]

36. Afshar M., Moallem S.A., Taheri M.H., Shahsavan M., Sukhtanloo F., Salehi F. Effect of Long Term Consumption of Sodium Benzoat before and during Pregnancy on Growth Indexes of Fetal Balb/c Mice. Modern Care J. 2012;9:173–180. [Google Scholar]

37. Emon S.T., Orakdogen M., Uslu S., Somay H. Effects of the Popular Food Additive Sodium Benzoate on Neural Tube Development in the Chicken Embryo. Turk. Neurosurg. 2015;25:294–297. doi:10.5137/1019-5149.JTN.12551-14.2. [PubMed] [CrossRef] [Google Scholar]

38. Jewo P.I., Oyeniran D.A., Ojekale A.B., Oguntola J.A. Histological and Biochemical Studies of Germ Cell Toxicity in Male Rats Exposed to Sodium Benzoate. J. Adv. Med. Pharm. Sci. 2020;22:51–69. doi:10.9734/jamps/2020/v22i530174. [CrossRef] [Google Scholar]

39. Kehinde O.S., Christianah O.I., Oyetunji O.A. Ascorbic Acid and Sodium Benzoate Synergistically Aggravates Testicular Dysfunction in Adult Wistar Rats. Int. J. Physiol. Pathophysiol. Pharmacol. 2018;10:39–46. [PMC free article] [PubMed] [Google Scholar]

40. Mahmoud G.S., Sayed S.A., Abdelmawla S.N., Amer M.A. Positive Effects of Systemic Sodium Benzoate and Olanzapine Treatment on Activities of Daily Life, Spatial Learning and Working Memory in Ketamine-Induced Rat Model of Schizophrenia. Int. J. Physiol. Pathophysiol. Pharmacol. 2019;11:21–30. [PMC free article] [PubMed] [Google Scholar]

41. Sohrabi D., Alipour M., Gholami M.R. The Effect of Sodium Benzoate on Testicular Tissue, Gonadotropins and Thyroid Hormones Level in Adult (Balb/C) Mice. KAUMS J. (FEYZ) 2008;12:7–11. [Google Scholar]

42. Najah A. Effect of Sodium Benzoate in the Level of Thyroid Stimulating Hormone and the Level of Thyroxin Hormone in Mature Albino Male Rats. J. Kerbala Univ. 2015;13:295–299. [Google Scholar]

43. Khodaei F., Kholghipour H., Hosseinzadeh M., Rashedinia M. Effect of Sodium Benzoate on Liver and Kidney Lipid Peroxidation and Antioxidant Enzymes in Mice. J. Rep. Pharm. Sci. 2019;8:217. doi:10.4103/jrptps.JRPTPS_68_18. [CrossRef] [Google Scholar]

44. Zeghib K., Boutlelis D.A. Food Additive (Sodium Benzoate)-Induced Damage on Renal Function and Glomerular Cells in Rats; Modulating Effect of Aqueous Extract of Atriplex halimus L. Iran J. Pharm. Res. 2021;20:296–306. doi:10.22037/ijpr.2020.111634.13272. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Ibekwe E.S., Uwakwe A.A., Monanu O.M. In Vivo Effects of Sodium Benzoate on Plasma Aspartate Amino Transferase and Alkaline Phosphatase of Wistar Albino Rats. Sci. Res. Essays. 2007;2:10–12. doi:10.5897/SRE.9000582. [CrossRef] [Google Scholar]

46. Tomoko Fujitani Short-Term Effect of Sodium Benzoate in F344 Rats and B6C3F1 Mice. Toxicol. Lett. 1993;69:171–179. doi:10.1016/0378-4274(93)90102-4. [PubMed] [CrossRef] [Google Scholar]

47. Radwan E.H., Elghazaly M.M., Aziz K.A., Barakat A.I., Hussein H.K. The Possible Effects of Sodium Nitrite and Sodium Benzoate as Food Additives on The Liver in Male Rats. J. Adv. Biol. 2020;13:14–30. doi:10.24297/jab.v13i.8717. [CrossRef] [Google Scholar]

48. Oyewole O.I., Dere F.A., Okoro O.E. Sodium Benzoate Mediated Hepatorenal Toxicity in Wistar Rat: Modulatory Effects of Azadirachta Indica (Neem) Leaf. Eur. J. Med. Plants. 2012;2:11–18. doi:10.9734/EJMP/2012/619. [CrossRef] [Google Scholar]

49. Agarwal A., Sharma A., Nigam G.L., Gupta A., Pandey V.D., Malik A., Yadav A. Histological profile of liver of albino rats on oral administration of sodium benzoate. J. Anat. Sci. 2016;24:29–32. [Google Scholar]

50. McDougal E., Gracie H., Oldridge J., Stewart T.M., Booth J.N., Rhodes S.M. Relationships between Cognition and Literacy in Children with Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-Analysis. Br. J. Dev. Psychol. 2022;40:130–150. doi:10.1111/bjdp.12395. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Bateman B., Warner J., Hutchinson E., Dean T., Rowlandson P., Gant C., Grundy J., Fitzgerald C., Stevenson J. The Effects of a Double Blind, Placebo Controlled, Artificial Food Colourings and Benzoate Preservative Challenge on Hyperactivity in a General Population Sample of Preschool Children. Arch. Dis. Child. 2004;89:506–511. doi:10.1136/adc.2003.031435. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. McCann D., Barrett A., Cooper A., Crumpler D., Dalen L., Grimshaw K., Kitchin E., Lok K., Porteous L., Prince E., et al. Food Additives and Hyperactive Behaviour in 3-Year-Old and 8/9-Year-Old Children in the Community: A Randomised, Double-Blinded, Placebo-Controlled Trial. Lancet. 2007;370:1560–1567. doi:10.1016/S0140-6736(07)61306-3. [PubMed] [CrossRef] [Google Scholar]

53. Beezhold B.L., Johnston C.S., Nochta K.A. Sodium Benzoate-Rich Beverage Consumption Is Associated with Increased Reporting of ADHD Symptoms in College Students: A Pilot Investigation. J. Atten. Disord. 2014;18:236–241. doi:10.1177/1087054712443156. [PubMed] [CrossRef] [Google Scholar]

54. Van West D., Claes S., Deboutte D. Differences in Hypothalamic-Pituitary-Adrenal Axis Functioning among Children with ADHD Predominantly Inattentive and Combined Types. Eur. Child. Adolesc. Psychiatry. 2009;18:543–553. doi:10.1007/s00787-009-0011-1. [PubMed] [CrossRef] [Google Scholar]

55. Corominas-Roso M., Palomar G., Ferrer R., Real A., Nogueira M., Corrales M., Casas M., Ramos-Quiroga J.A. Cortisol Response to Stress in Adults with Attention Deficit Hyperactivity Disorder. Int. J. Neuropsychopharmacol. 2015;18:pyv027. doi:10.1093/ijnp/pyv027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Maier E., Kurz K., Jenny M., Schennach H., Ueberall F., Fuchs D. Food Preservatives Sodium Benzoate and Propionic Acid and Colorant Curcumin Suppress Th1-Type Immune Response in Vitro. Food Chem. Toxicol. 2010;48:1950–1956. doi:10.1016/j.fct.2010.04.042. [PubMed] [CrossRef] [Google Scholar]

57. Suwan P., Akaramethathip D., Noipayak P. Association between Allergic Sensitization and Attention Deficit Hyperactivity Disorder (ADHD) Asian Pac. J. Allergy Immunol. 2011;29:57–65. [PubMed] [Google Scholar]

58. Miyazaki C., Koyama M., Ota E., Swa T., Mlunde L.B., Amiya R.M., Tachibana Y., Yamamoto-Hanada K., Mori R. Allergic Diseases in Children with Attention Deficit Hyperactivity Disorder: A Systematic Review and Meta-Analysis. BMC Psychiatry. 2017;17:120. doi:10.1186/s12888-017-1281-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Dunn G.A., Nigg J.T., Sullivan E.L. Neuroinflammation as a Risk Factor for Attention Deficit Hyperactivity Disorder. Pharmacol. Biochem. Behav. 2019;182:22–34. doi:10.1016/j.pbb.2019.05.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Joseph N., Zhang-James Y., Perl A., Faraone S.V. Oxidative Stress and ADHD: A Meta-Analysis. J. Atten. Disord. 2015;19:915–924. doi:10.1177/1087054713510354. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Pinho R., Wang B., Becker A., Rothenberger A., Outeiro T.F., Herrmann-Lingen C., Meyer T. Attention-Deficit/Hyperactivity Disorder Is Associated with Reduced Levels of Serum Low-Density Lipoprotein Cholesterol in Adolescents. Data from the Population-Based German KiGGS Study. World J. Biol. Psychiatry. 2019;20:496–504. doi:10.1080/15622975.2017.1417636. [PubMed] [CrossRef] [Google Scholar]

62. Efekemo O., Akaninwor J.O., Essien E.B. Effect of Oral Intake of Sodium Benzoate on Serum Cholesterol and Proinflammatory Cytokine (Tumor Necrosis Factor Alpha [TNF-α] and Interleukin-6 [IL-6]) Levels in the Heart Tissue of Wistar Rats. Asian J. Res. Biochem. 2019;5:1–8. doi:10.9734/ajrb/2019/v5i230086. [CrossRef] [Google Scholar]

63. Stoodley C.J. Distinct Regions of the Cerebellum Show Gray Matter Decreases in Autism, ADHD, and Developmental Dyslexia. Front. Syst. Neurosci. 2014;8:92. doi:10.3389/fnsys.2014.00092. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Noorafshan A., Erfanizadeh M., Karbalay-Doust S. Stereological Studies of the Effects of Sodium Benzoate or Ascorbic Acid on Rats’ Cerebellum. Saudi Med. J. 2014;35:1494–1500. [PMC free article] [PubMed] [Google Scholar]

65. Schaubschläger W.W., Becker W.M., Schade U., Zabel P., Schlaak M. Release of Mediators from Human Gastric Mucosa and Blood in Adverse Reactions to Benzoate. Int. Arch. Allergy Appl. Immunol. 1991;96:97–101. doi:10.1159/000235478. [PubMed] [CrossRef] [Google Scholar]

66. Mcneal T.P., Nyman P.J., Diachenko G.W., Hollifield H.C. Survey of Benzene in Foods by Using Headspace Concentration Techniques and Capillary Gas Chromatography. J. AOAC Int. 1993;76:1213–1219. doi:10.1093/jaoac/76.6.1213. [PubMed] [CrossRef] [Google Scholar]

67. Heshmati A., Ghadimi S., Mousavi Khaneghah A., Barba F.J., Lorenzo J.M., Nazemi F., Fakhri Y. Risk Assessment of Benzene in Food Samples of Iran’s Market. Food Chem. Toxicol. 2018;114:278–284. doi:10.1016/j.fct.2018.02.043. [PubMed] [CrossRef] [Google Scholar]

68. Salviano dos Santos V.P., Medeiros Salgado A., Guedes Torres A., Signori Pereira K. Benzene as a Chemical Hazard in Processed Foods. Int. J. Food Sci. 2015;2015:e545640. doi:10.1155/2015/545640. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Azuma S.L., Quartey N.K.-A., Ofosu I.W. Sodium Benzoate in Non-Alcoholic Carbonated (Soft) Drinks: Exposure and Health Risks. Sci. Afr. 2020;10:e00611. doi:10.1016/j.sciaf.2020.e00611. [CrossRef] [Google Scholar]

70. Gardner L.K., Lawrence G.D. Benzene Production from Decarboxylation of Benzoic Acid in the Presence of Ascorbic Acid and a Transition-Metal Catalyst. J. Agric. Food Chem. 1993;41:693–695. doi:10.1021/jf00029a001. [CrossRef] [Google Scholar]

71. Nyman P.J., Wamer W.G., Begley T.H., Diachenko G.W., Perfetti G.A. Evaluation of Accelerated UV and Thermal Testing for Benzene Formation in Beverages Containing Benzoate and Ascorbic Acid. J. Food Sci. 2010;75:C263–C267. doi:10.1111/j.1750-3841.2010.01536.x. [PubMed] [CrossRef] [Google Scholar]

72. Kamel M.M., Razek A.H. Neurobehavioral Alterations in Male Rats Exposed to Sodium Benzoate. Life Sci. J. 2013;10:722–726. [Google Scholar]

73. Noorafshan A., Erfanizadeh M., Karbalay-doust S. Sodium Benzoate, a Food Preservative, Induces Anxiety and Motor Impairment in Rats. Neurosciences J. 2014;19:24–28. [PubMed] [Google Scholar]

74. Olofinnade A.T., Onaolapo A.Y., Onaolapo O.J. Anxiogenic, Memory-Impairing, pro-Oxidant and pro-Inflammatory Effects of Sodium Benzoate in the Mouse Brain. Dusunen Adam J. Psychiatry Neurol. Sci. 2021;34:14. doi:10.14744/DAJPNS.2021.00116. [CrossRef] [Google Scholar]

75. Gaur H., Purushothaman S., Pullaguri N., Bhargava Y., Bhargava A. Sodium Benzoate Induced Developmental Defects, Oxidative Stress and Anxiety-like Behaviour in Zebrafish Larva. Biochem. Biophys. Res. Commun. 2018;502:364–369. doi:10.1016/j.bbrc.2018.05.171. [PubMed] [CrossRef] [Google Scholar]

76. Khoshnoud M.J., Siavashpour A., Bakhshizadeh M., Rashedinia M. Effects of Sodium Benzoate, a Commonly Used Food Preservative, on Learning, Memory, and Oxidative Stress in Brain of Mice. J. Biochem. Mol. Toxicol. 2018;32:e22022. doi:10.1002/jbt.22022. [PubMed] [CrossRef] [Google Scholar]

77. Rajendran P., Nandakumar N., Rengarajan T., Palaniswami R., Gnanadhas E.N., Lakshminarasaiah U., Gopas J., Nishigaki I. Antioxidants and Human Diseases. Clin. Chim. Acta. 2014;436:332–347. doi:10.1016/j.cca.2014.06.004. [PubMed] [CrossRef] [Google Scholar]

78. Brahmachari S., Jana A., Pahan K. Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive, Reduces Microglial and Astroglial Inflammatory Responses. J. Immunol. 2009;183:5917–5927. doi:10.4049/jimmunol.0803336. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Walia D., Kaur G., Jaggi A.S., Bali A. Exploring the Therapeutic Potential of Sodium Benzoate in Acetic Acid-Induced Ulcerative Colitis in Rats. J. Basic Clin. Physiol. Pharmacol. 2019;30 doi:10.1515/jbcpp-2019-0086. [PubMed] [CrossRef] [Google Scholar]

80. Xu W., Li T., Gao L., Lenahan C., Zheng J., Yan J., Shao A., Zhang J. Sodium Benzoate Attenuates Secondary Brain Injury by Inhibiting Neuronal Apoptosis and Reducing Mitochondria-Mediated Oxidative Stress in a Rat Model of Intracerebral Hemorrhage: Possible Involvement of DJ-1/Akt/IKK/NFκB Pathway. Front. Mol. Neurosci. 2019;12:105. doi:10.3389/fnmol.2019.00105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Molero-Luis M., Casas-Alba D., Orellana G., Ormazabal A., Sierra C., Oliva C., Valls A., Velasco J., Launes C., Cuadras D., et al. Cerebrospinal Fluid Neopterin as a Biomarker of Neuroinflammatory Diseases. Sci. Rep. 2020;10:18291. doi:10.1038/s41598-020-75500-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Williams R.E., Lock E.A. Sodium Benzoate Attenuates D-Serine Induced Nephrotoxicity in the Rat. Toxicology. 2005;207:35–48. doi:10.1016/j.tox.2004.08.008. [PubMed] [CrossRef] [Google Scholar]

83. Arabsolghar R., Saberzadeh J., Khodaei F., Borojeni R.A., Khorsand M., Rashedinia M. The Protective Effect of Sodium Benzoate on Aluminum Toxicity in PC12 Cell Line. Res. Pharm. Sci. 2017;12:391–400. doi:10.4103/1735-5362.213984. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Yilmaz B., Karabay A.Z. Food Additive Sodium Benzoate (NaB) Activates NFκB and Induces Apoptosis in HCT116 Cells. Molecules. 2018;23:723. doi:10.3390/molecules23040723. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. GBD Results Tool. GHDx. [(accessed on 14 November 2021)]. Available online: http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/d780dffbe8a381b25e1416884959e88b

86. Bains N., Abdijadid S. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2021. Major Depressive Disorder. [Google Scholar]

87. Nobis A., Zalewski D., Waszkiewicz N. Peripheral Markers of Depression. J. Clin. Med. 2020;9:3793. doi:10.3390/jcm9123793. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Adell A. Brain NMDA Receptors in Schizophrenia and Depression. Biomolecules. 2020;10:947. doi:10.3390/biom10060947. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Otte D.-M., de Arellano M.L.B., Bilkei-Gorzo A., Albayram Ö., Imbeault S., Jeung H., Alferink J., Zimmer A. Effects of Chronic D-Serine Elevation on Animal Models of Depression and Anxiety-Related Behavior. PLoS ONE. 2013;8:e67131. doi:10.1371/journal.pone.0067131. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Belujon P., Grace A.A. Dopamine System Dysregulation in Major Depressive Disorders. Int. J. Neuropsychopharmacol. 2017;20:1036–1046. doi:10.1093/ijnp/pyx056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Betts J.F., Schweimer J.V., Burnham K.E., Burnet P.W.J., Sharp T., Harrison P.J. D-Amino Acid Oxidase Is Expressed in the Ventral Tegmental Area and Modulates Cortical Dopamine. Front. Synaptic Neurosci. 2014;6:11. doi:10.3389/fnsyn.2014.00011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Guo F., Zhang Z., Liang Y., Yang R., Tan Y. Exploring the Role and Mechanism of Sodium Benzoate in c*ms-Induced Depression Model of Rats. Neuroendocrinol. Lett. 2020;41:205–212. [PubMed] [Google Scholar]

93. Lai C.-H. Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, Increased Volumes of Thalamus, Amygdala, and Brainstem in a Drug-Naïve Patient With Major Depression. J. Neuropsychiatry Clin. Neurosci. 2013;25:E50–E51. doi:10.1176/appi.neuropsych.12030056. [PubMed] [CrossRef] [Google Scholar]

94. Lai C.-H., Lane H.-Y., Tsai G.E. Clinical and Cerebral Volumetric Effects of Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, in a Drug-Naïve Patient with Major Depression. Biol. Psychiatry. 2012;71:e9–e10. doi:10.1016/j.biopsych.2011.10.034. [PubMed] [CrossRef] [Google Scholar]

95. Hou Y.-C., Lai C.-H. A Kind of D-Amino Acid Oxidase Inhibitor, Sodium Benzoate, Might Relieve Panic Symptoms in a First-Episode, Drug-Naïve Panic-Disorder Patient. J. Neuropsychiatry Clin. Neurosci. 2013;25:E07–E08. doi:10.1176/appi.neuropsych.12030075. [PubMed] [CrossRef] [Google Scholar]

96. Modi K.K., Roy A., Brahmachari S., Rangasamy S.B., Pahan K. Cinnamon and Its Metabolite Sodium Benzoate Attenuate the Activation of P21rac and Protect Memory and Learning in an Animal Model of Alzheimer’s Disease. PLoS ONE. 2015;10:e0130398. doi:10.1371/journal.pone.0130398. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Esnafoglu E., Ozturan D.D. The Relationship of Severity of Depression with hom*ocysteine, Folate, Vitamin B12, and Vitamin D Levels in Children and Adolescents. Child. Adolesc. Ment. Health. 2020;25:249–255. doi:10.1111/camh.12387. [PubMed] [CrossRef] [Google Scholar]

98. Chung K.-H., Chiou H.-Y., Chen Y.-H. Associations between Serum hom*ocysteine Levels and Anxiety and Depression among Children and Adolescents in Taiwan. Sci. Rep. 2017;7:8330. doi:10.1038/s41598-017-08568-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Monje F.J., Cabatic M., Divisch I., Kim E.-J., Herkner K.R., Binder B.R., Pollak D.D. Constant Darkness Induces IL-6-Dependent Depression-Like Behavior through the NF-ΚB Signaling Pathway. J. Neurosci. 2011;31:9075–9083. doi:10.1523/JNEUROSCI.1537-11.2011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Koo J., Marangell L.b., Nakamura M., Armstrong A., Jeon C., Bhutani T., Wu J.j. Depression and Suicidality in Psoriasis: Review of the Literature Including the Cytokine Theory of Depression. J. Eur. Acad. Dermatol. Venereol. 2017;31:1999–2009. doi:10.1111/jdv.14460. [PubMed] [CrossRef] [Google Scholar]

101. Makhija K., Karunakaran S. The Role of Inflammatory Cytokines on the Aetiopathogenesis of Depression. Aust. New Zealand J. Psychiatry. 2013;47:828–839. doi:10.1177/0004867413488220. [PubMed] [CrossRef] [Google Scholar]

102. Jenkins T.A., Nguyen J.C.D., Polglaze K.E., Bertrand P.P. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients. 2016;8:56. doi:10.3390/nu8010056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Lindseth G., Helland B., Caspers J. The Effects of Dietary Tryptophan on Affective Disorders. Arch. Psychiatr. Nurs. 2015;29:102–107. doi:10.1016/j.apnu.2014.11.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Dantzer R. Role of the Kynurenine Metabolism Pathway in Inflammation-Induced Depression: Preclinical Approaches. In: Dantzer R., Capuron L., editors. Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Springer International Publishing; Cham, Switzerland: 2017. pp. 117–138. Aktualne Tematy w Neuronaukach Behawioralnych. [PMC free article] [PubMed] [Google Scholar]

105. Muszyńska B., Łojewski M., Rojowski J., Opoka W., Sułkowska-Ziaja K. Surowce naturalne mające znaczenie w profilaktyce i wspomagające leczenie depresji [Natural products of relevance in the prevention and supportive treatment of depression] Psychiatria Polska. 2015;49:435–453. doi:10.12740/PP/29367. [PubMed] [CrossRef] [Google Scholar]

106. Widner B., Laich A., Sperner-Unterweger B., Ledochowski M., Fuchs D. Neopterin Production, Tryptophan Degradation, and Mental Depression—What Is the Link? Brain Behav. Immun. 2002;16:590–595. doi:10.1016/S0889-1591(02)00006-5. [PubMed] [CrossRef] [Google Scholar]

107. Celik C., Erdem M., Caycı T., Ozdemir B., Ozgur Akgul E., Kurt Y.G., Yaman H., Isıntas M., Ozgen F., Ozsahin A. The Association between Serum Levels of Neopterin and Number of Depressive Episodes of Major Depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2010;34:372–375. doi:10.1016/j.pnpbp.2010.01.002. [PubMed] [CrossRef] [Google Scholar]

108. Ciardi C., Jenny M., Tschoner A., Ueberall F., Patsch J., Pedrini M., Ebenbichler C., Fuchs D. Food Additives Such as Sodium Sulphite, Sodium Benzoate and Curcumin Inhibit Leptin Release in Lipopolysaccharide-Treated Murine Adipocytes in Vitro. Br. J. Nutr. 2012;107:826–833. doi:10.1017/S0007114511003680. [PubMed] [CrossRef] [Google Scholar]

109. Ambrus L., Westling S. Leptin, Anxiety Symptoms, and Hypothalamic-Pituitary-Adrenal Axis Activity among Drug-Free, Female Suicide Attempters. Neuropsychobiology. 2019;78:145–152. doi:10.1159/000500737. [PubMed] [CrossRef] [Google Scholar]

110. Mikulska J., Juszczyk G., Gawrońska-Grzywacz M., Herbet M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci. 2021;11:1298. doi:10.3390/brainsci11101298. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Pasquin S., Sharma M., Gauchat J.-F. Ciliary Neurotrophic Factor (CNTF): New Facets of an Old Molecule for Treating Neurodegenerative and Metabolic Syndrome Pathologies. Cytokine Growth Factor Rev. 2015;26:507–515. doi:10.1016/j.cytogfr.2015.07.007. [PubMed] [CrossRef] [Google Scholar]

112. Modi K.K., Jana M., Mondal S., Pahan K. Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive, Upregulates Ciliary Neurotrophic Factor in Astrocytes and Oligodendrocytes. Neurochem. Res. 2015;40:2333–2347. doi:10.1007/s11064-015-1723-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Peruga I., Hartwig S., Merkler D., Thöne J., Hovemann B., Juckel G., Gold R., Linker R.A. Endogenous Ciliary Neurotrophic Factor Modulates Anxiety and Depressive-like Behavior. Behav. Brain Res. 2012;229:325–332. doi:10.1016/j.bbr.2012.01.020. [PubMed] [CrossRef] [Google Scholar]

114. Uzbekov M., Shikhov S. Ciliary Neurotrophic Factor Disturbances in Patients with Melancholic Depression. Biomed. J. Sci. Technol. Res. 2019;13:10016–10017. doi:10.26717/BJSTR.2019.13.002408. [CrossRef] [Google Scholar]

115. Jia C., Brown R.W., Malone H.M., Burgess K.C., Gill D.W., Keasey M.P., Hagg T. Ciliary Neurotrophic Factor Is a Key Sex-Specific Regulator of Depressive-like Behavior in Mice. Psychoneuroendocrinology. 2019;100:96–105. doi:10.1016/j.psyneuen.2018.09.038. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Lin C.-H., Chen P.-K., Wang S.-H., Lane H.-Y. Effect of Sodium Benzoate on Cognitive Function Among Patients With Behavioral and Psychological Symptoms of Dementia. JAMA Netw. Open. 2021;4:e216156. doi:10.1001/jamanetworkopen.2021.6156. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Jarema M. Psychiatria w Praktyce. Oficyna Wydawnicza Medical Education Sp. z o.o.; Warszawa, Poland: 2011. [Google Scholar]

118. Jarema M. Psychiatria. 2nd ed. PZWL; Warszawa, Poland: 2016. [Google Scholar]

119. Harrison’s Principles of Internal Medicine, 20e. AccessMedicine. McGraw Hill Medical. [(accessed on 23 November 2021)]. Available online: https://accessmedicine.mhmedical.com/book.aspx?bookid=2129&isMissingChapter=true

120. Wu Q., Wang X., Wang Y., Long Y.-J., Zhao J.-P., Wu R.-R. Developments in Biological Mechanisms and Treatments for Negative Symptoms and Cognitive Dysfunction of Schizophrenia. Neurosci. Bull. 2021;37:1609–1624. doi:10.1007/s12264-021-00740-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Raj K.S., Williams N., DeBattista C. Schizophrenia Spectrum Disorders. In: Papadakis M.A., McPhee S.J., Rabow M.W., McQuaid K.R., editors. Current Medical Diagnosis & Treatment 2022. McGraw-Hill Education; New York, NY, USA: 2022. [Google Scholar]

122. Sklar P. Schizophrenia. In: Murray M.F., Babyatsky M.W., Giovanni M.A., Alkuraya F.S., Stewart D.R., editors. Clinical Genomics: Practical Applications in Adult Patient Care. McGraw-Hill Education; New York, NY, USA: 2014. [Google Scholar]

123. Radhakrishnan R., Ganesh S., Meltzer H.Y., Bobo W.V., Heckers S.H., Fatemi H.S., D’Souza D.C. Schizophrenia. In: Ebert M.H., Leckman J.F., Petrakis I.L., editors. Current Diagnosis & Treatment: Psychiatry. McGraw-Hill Education; New York, NY, USA: 2019. [Google Scholar]

124. Smith S.M., Uslaner J.M., Hutson P.H. The Therapeutic Potential of D-Amino Acid Oxidase (DAAO) Inhibitors. Open Med. Chem. J. 2010;4:3–9. doi:10.2174/1874104501004020003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Burnet P., Eastwood S., Bristow G., Godlewska B., Sikka P., Walker M., Harrison P. D-Amino Acid Oxidase (DAO) Activity and Expression Are Increased in Schizophrenia. Mol. Psychiatry. 2008;13:658–660. doi:10.1038/mp.2008.47. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Caldinelli L., Molla G., Bracci L., Lelli B., Pileri S., Cappelletti P., Sacchi S., Pollegioni L. Effect of Ligand Binding on Human D-Amino Acid Oxidase: Implications for the Development of New Drugs for Schizophrenia Treatment. Protein Sci. 2010;19:1500–1512. doi:10.1002/pro.429. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Howley E., Bestwick M., Fradley R., Harrison H., Leveridge M., Okada K., Fieldhouse C., Farnaby W., Canning H., Sykes A.P., et al. Assessment of the Target Engagement and D-Serine Biomarker Profiles of the D-Amino Acid Oxidase Inhibitors Sodium Benzoate and PGM030756. Neurochem. Res. 2017;42:3279–3288. doi:10.1007/s11064-017-2367-9. [PubMed] [CrossRef] [Google Scholar]

128. MacKay M.-A.B., Kravtsenyuk M., Thomas R., Mitchell N.D., Dursun S.M., Baker G.B. D-Serine: Potential Therapeutic Agent and/or Biomarker in Schizophrenia and Depression? Front. Psychiatry. 2019;10:25. doi:10.3389/fpsyt.2019.00025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Saleem S., Shaukat F., Gul A., Arooj M., Malik A. Potential Role of Amino Acids in Pathogenesis of Schizophrenia. Int. J. Health Sci. 2017;11:63–68. [PMC free article] [PubMed] [Google Scholar]

130. Enomoto T., Noda Y., Nabeshima T. Phencyclidine and Genetic Animal Models of Schizophrenia Developed in Relation to the Glutamate Hypothesis. Methods Find. Exp. Clin. Pharmacol. 2007;29:291–301. doi:10.1358/mf.2007.29.4.1075358. [PubMed] [CrossRef] [Google Scholar]

131. Matsuura A., Fujita Y., Iyo M., Hashimoto K. Effects of Sodium Benzoate on Pre-Pulse Inhibition Deficits and Hyperlocomotion in Mice after Administration of Phencyclidine. Acta Neuropsychiatr. 2015;27:159–167. doi:10.1017/neu.2015.1. [PubMed] [CrossRef] [Google Scholar]

132. Sershen H., Hashim A., Dunlop D.S., Suckow R.F., Cooper T.B., Javitt D.C. Modulating NMDA Receptor Function with D-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model. Neurochem. Res. 2016;41:398–408. doi:10.1007/s11064-016-1838-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. De Luca V., Viggiano E., Messina G., Viggiano A., Borlido C., Viggiano A., Monda M. Peripheral Amino Acid Levels in Schizophrenia and Antipsychotic Treatment. Psychiatry Investig. 2008;5:203–208. doi:10.4306/pi.2008.5.4.203. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Monte A.S., de Souza G.C., McIntyre R.S., Soczynska J.K., dos Santos J.V., Cordeiro R.C., Ribeiro B.M.M., de Lucena D.F., Vasconcelos S.M.M., de Sousa F.C.F., et al. Prevention and Reversal of Ketamine-Induced Schizophrenia Related Behavior by Minocycline in Mice: Possible Involvement of Antioxidant and Nitrergic Pathways. J. Psychopharmacol. 2013;27:1032–1043. doi:10.1177/0269881113503506. [PubMed] [CrossRef] [Google Scholar]

135. Becker A., Peters B., Schroeder H., Mann T., Huether G., Grecksch G. Ketamine-Induced Changes in Rat Behaviour: A Possible Animal Model of Schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2003;27:687–700. doi:10.1016/S0278-5846(03)00080-0. [PubMed] [CrossRef] [Google Scholar]

136. Lin C.-Y., Liang S.-Y., Chang Y.-C., Ting S.-Y., Kao C.-L., Wu Y.-H., Tsai G.E., Lane H.-Y. Adjunctive Sarcosine plus Benzoate Improved Cognitive Function in Chronic Schizophrenia Patients with Constant Clinical Symptoms: A Randomised, Double-Blind, Placebo-Controlled Trial. World J. Biol. Psychiatry. 2017;18:357–368. doi:10.3109/15622975.2015.1117654. [PubMed] [CrossRef] [Google Scholar]

137. Lane H.-Y., Lin C.-H., Green M.F., Hellemann G., Huang C.-C., Chen P.-W., Tun R., Chang Y.-C., Tsai G.E. Add-on Treatment of Benzoate for Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Trial of D-Amino Acid Oxidase Inhibitor. JAMA Psychiatry. 2013;70:1267–1275. doi:10.1001/jamapsychiatry.2013.2159. [PubMed] [CrossRef] [Google Scholar]

138. Lin C.-H., Lin C.-H., Chang Y.-C., Huang Y.-J., Chen P.-W., Yang H.-T., Lane H.-Y. Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, Added to Clozapine for the Treatment of Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Trial. Biol. Psychiatry. 2018;84:422–432. doi:10.1016/j.biopsych.2017.12.006. [PubMed] [CrossRef] [Google Scholar]

139. Moustafa A.A., Hewedi D.H., Eissa A.M., Frydecka D., Misiak B. hom*ocysteine Levels in Schizophrenia and Affective Disorders—Focus on Cognition. Front. Behav. Neurosci. 2014;8:343. doi:10.3389/fnbeh.2014.00343. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. Volk D.W., Moroco A.E., Roman K.M., Edelson J.R., Lewis D.A. The Role of the Nuclear Factor-ΚB Transcriptional Complex in Cortical Immune Activation in Schizophrenia. Biol. Psychiatry. 2019;85:25–34. doi:10.1016/j.biopsych.2018.06.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Safa A., Badrlou E., Arsang-Jang S., Sayad A., Taheri M., Ghafouri-Fard S. Expression of NF-ΚB Associated LncRNAs in Schizophrenia. Sci. Rep. 2020;10:18105. doi:10.1038/s41598-020-75333-w. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Ermakov E.A., Dmitrieva E.M., Parshukova D.A., Kazantseva D.V., Vasilieva A.R., Smirnova L.P. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. Oxid. Med. Cell. Longev. 2021;2021:8881770. doi:10.1155/2021/8881770. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Chiappelli J., Postolache T.T., Kochunov P., Rowland L.M., Wijtenburg S.A., Shukla D.K., Tagamets M., Du X., Savransky A., Lowry C.A., et al. Tryptophan Metabolism and White Matter Integrity in Schizophrenia. Neuropsychopharmacology. 2016;41:2587–2595. doi:10.1038/npp.2016.66. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Golightly K.L., Lloyd J.A., Hobson J.E., Gallagher P., Mercer G., Young A.H. Acute Tryptophan Depletion in Schizophrenia. Psychol. Med. 2001;31:75–84. doi:10.1017/S0033291799003062. [PubMed] [CrossRef] [Google Scholar]

145. Chittiprol S., Venkatasubramanian G., Neelakantachar N., Babu S.V.S., Reddy N.A., Shetty K.T., Gangadhar B.N. Oxidative Stress and Neopterin Abnormalities in Schizophrenia: A Longitudinal Study. J. Psychiatr. Res. 2010;44:310–313. doi:10.1016/j.jpsychires.2009.09.002. [PubMed] [CrossRef] [Google Scholar]

146. Scott J.G., Baker A., Lim C.C.W., Foley S., Dark F., Gordon A., Ward D., Richardson D., Bruxner G., Beckmann K.M., et al. Effect of Sodium Benzoate vs Placebo Among Individuals With Early Psychosis. JAMA Netw. Open. 2020;3:e2024335. doi:10.1001/jamanetworkopen.2020.24335. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Walczak-Nowicka Ł.J., Herbet M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in Their Pathogenesis. Int. J. Mol. Sci. 2021;22:9290. doi:10.3390/ijms22179290. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Serwer P. Hypothesis for the Cause and Therapy of Neurodegenerative Diseases. Med. Hypotheses. 2018;110:60–63. doi:10.1016/j.mehy.2017.11.001. [PubMed] [CrossRef] [Google Scholar]

149. Radi E., Formichi P., Battisti C., Federico A. Apoptosis and Oxidative Stress in Neurodegenerative Diseases. J. Alzheimer’s Dis. 2014;42:S125–S152. doi:10.3233/JAD-132738. [PubMed] [CrossRef] [Google Scholar]

150. Kumar A., Sidhu J., Goyal A., Tsao J.W. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2022. Alzheimer Disease. [Google Scholar]

151. Kouli A., Torsney K.M., Kuan W.-L. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. In: Stoker T.B., Greenland J.C., editors. Parkinson’s Disease: Pathogenesis and Clinical Aspects. Codon Publications; Brisbane, Australia: 2018. [Google Scholar]

152. Zafar S., Yaddanapudi S.S. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2022. Parkinson Disease. [Google Scholar]

153. Tafti D., Ehsan M., Xixis K.L. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2022. Multiple Sclerosis. [Google Scholar]

154. Ghasemi N., Razavi S., Nikzad E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J. 2017;19:1–10. [PMC free article] [PubMed] [Google Scholar]

155. Jana A., Modi K.K., Roy A., Anderson J.A., van Breemen R.B., Pahan K. Up-Regulation of Neurotrophic Factors by Cinnamon and Its Metabolite Sodium Benzoate: Therapeutic Implications for Neurodegenerative Disorders. J. Neuroimmune Pharmacol. 2013;8:739–755. doi:10.1007/s11481-013-9447-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

156. Sharma M., Tiwari M., Tiwari R.K. Hyperhom*ocysteinemia: Impact on Neurodegenerative Diseases. Basic Clin. Pharmacol. Toxicol. 2015;117:287–296. doi:10.1111/bcpt.12424. [PubMed] [CrossRef] [Google Scholar]

157. Herrmann W., Obeid R. hom*ocysteine: A Biomarker in Neurodegenerative Diseases. Clin. Chem. Lab. Med. 2011;49:435–441. doi:10.1515/CCLM.2011.084. [PubMed] [CrossRef] [Google Scholar]

158. Modi K.K., Rangasamy S.B., Dasarathi S., Roy A., Pahan K. Cinnamon Converts Poor Learning Mice to Good Learners: Implications for Memory Improvement. J. Neuroimmune Pharmacol. 2016;11:693–707. doi:10.1007/s11481-016-9693-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Kaur N., Lu B., Ward S.m., Halvorsen S.w. Inducers of Oxidative Stress Block Ciliary Neurotrophic Factor Activation of Jak/STAT Signaling in Neurons. J. Neurochem. 2005;92:1521–1530. doi:10.1111/j.1471-4159.2004.02990.x. [PubMed] [CrossRef] [Google Scholar]

160. Bloch J., Bachoud-Lévi A.c., Déglon N., Lefaucheur J.p., Winkel L., Palfi S., Nguyen J.p., Bourdet C., Remy P., Brugières P., et al. Neuroprotective Gene Therapy for Huntington’s Disease, Using Polymer-Encapsulated Cells Engineered to Secrete Human Ciliary Neurotrophic Factor: Results of a Phase I Study. Hum. Gene Ther. 2004;15:968–975. doi:10.1089/hum.2004.15.968. [PubMed] [CrossRef] [Google Scholar]

161. Singh S., Singh T.G. Role of Nuclear Factor Kappa B (NF-ΚB) Signalling in Neurodegenerative Diseases: An Mechanistic Approach. Curr. Neuropharmacol. 2020;18:918–935. doi:10.2174/1570159X18666200207120949. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

162. Luo S., Mizuta H., Rubinsztein D.C. P21-Activated Kinase 1 Promotes Soluble Mutant Huntingtin Self-Interaction and Enhances Toxicity. Hum. Mol. Genet. 2008;17:895–905. doi:10.1093/hmg/ddm362. [PubMed] [CrossRef] [Google Scholar]

163. Vazquez-Villaseñor I., Garwood C.J., Heath P.R., Simpson J.E., Ince P.G., Wharton S.B. Expression of P16 and P21 in the Frontal Association Cortex of ALS/MND Brains Suggests Neuronal Cell Cycle Dysregulation and Astrocyte Senescence in Early Stages of the Disease. Neuropathol. Appl. Neurobiol. 2020;46:171–185. doi:10.1111/nan.12559. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

164. Blasko I., Knaus G., Weiss E., Kemmler G., Winkler C., Falkensammer G., Griesmacher A., Würzner R., Marksteiner J., Fuchs D. Cognitive Deterioration in Alzheimer’s Disease Is Accompanied by Increase of Plasma Neopterin. J. Psychiatr. Res. 2007;41:694–701. doi:10.1016/j.jpsychires.2006.02.001. [PubMed] [CrossRef] [Google Scholar]

165. Widner B., Leblhuber F., Fuchs D. Increased Neopterin Production and Tryptophan Degradation in Advanced Parkinson’s Disease. J. Neural Transm. 2002;109:181–189. doi:10.1007/s007020200014. [PubMed] [CrossRef] [Google Scholar]

166. Stoy N., Mackay G.M., Forrest C.M., Christofides J., Egerton M., Stone T.W., Darlington L.G. Tryptophan Metabolism and Oxidative Stress in Patients with Huntington’s Disease. J. Neurochem. 2005;93:611–623. doi:10.1111/j.1471-4159.2005.03070.x. [PubMed] [CrossRef] [Google Scholar]

167. Lane H.-Y., Tu C.-H., Lin W.-C., Lin C.-H. Brain Activity of Benzoate, a D-Amino Acid Oxidase Inhibitor, in Patients With Mild Cognitive Impairment in a Randomized, Double-Blind, Placebo Controlled Clinical Trial. Int. J. Neuropsychopharmacol. 2021;24:392–399. doi:10.1093/ijnp/pyab001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Lin C.-H., Chen P.-K., Chang Y.-C., Chuo L.-J., Chen Y.-S., Tsai G.E., Lane H.-Y. Benzoate, a D-Amino Acid Oxidase Inhibitor, for the Treatment of Early-Phase Alzheimer Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. Biol. Psychiatry. 2014;75:678–685. doi:10.1016/j.biopsych.2013.08.010. [PubMed] [CrossRef] [Google Scholar]

169. Weaver D., Gupta M., Meek A., Wang Y., Wu F. Alzheimer’s Disease as a Disorder of Tryptophan Metabolism (2745) Neurology. 2020;94:2745. [Google Scholar]

170. Lin C.-H., Yang H.-T., Chen P.-K., Wang S.-H., Lane H.-Y. Precision Medicine of Sodium Benzoate for the Treatment of Behavioral and Psychological Symptoms of Dementia (BPSD) Neuropsychiatr. Dis. Treat. 2020;16:509–518. doi:10.2147/NDT.S234371. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

171. Lin C.-H., Chen P.-K., Wang S.-H., Lane H.-Y. Sodium Benzoate for the Treatment of Behavioral and Psychological Symptoms of Dementia (BPSD): A Randomized, Double-Blind, Placebo-Controlled, 6-Week Trial. J. Psychopharmacol. 2019;33:1030–1033. doi:10.1177/0269881119849815. [PubMed] [CrossRef] [Google Scholar]

172. Repici M., Giorgini F. DJ-1 in Parkinson’s Disease: Clinical Insights and Therapeutic Perspectives. J. Clin. Med. 2019;8:1377. doi:10.3390/jcm8091377. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

173. Khasnavis S., Pahan K. Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive, Upregulates Neuroprotective Parkinson Disease Protein DJ-1 in Astrocytes and Neurons. J. Neuroimmune Pharmacol. 2012;7:424–435. doi:10.1007/s11481-011-9286-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

174. Patel D., Jana A., Roy A., Pahan K. Cinnamon and Its Metabolite Protect the Nigrostriatum in a Mouse Model of Parkinson’s Disease via Astrocytic GDNF. J. Neuroimmune Pharmacol. 2019;14:503–518. doi:10.1007/s11481-019-09855-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. Chandra G., Roy A., Rangasamy S.B., Pahan K. Induction of Adaptive Immunity Leads to Nigrostriatal Disease Progression in MPTP Mouse Model of Parkinson’s Disease. J. Immunol. 2017;198:4312–4326. doi:10.4049/jimmunol.1700149. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

176. Rangasamy S.B., Dasarathi S., Nutakki A., Mukherjee S., Nellivalasa R., Pahan K. Stimulation of Dopamine Production by Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive. J. Alzheimer’s Dis. Rep. 2021;5:295–310. doi:10.3233/ADR-210001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

177. Rzepiński Ł., Maciejek Z. Heterogenność etiopatogenezy stwardnienia rozsianego w kontekście danych klinicznych, immunohistochemicznych, autopsyjnych oraz aktualnych możliwości terapeutycznych. Pol. Przegląd Neurol. 2018;14:1–9. [Google Scholar]

178. Rezaei N., Amirghofran Z., Nikseresht A., Ashjazade N., Zoghi S., Tahvili S., Kamali-Sarvestani E. In Vitro Effects of Sodium Benzoate on Th1/Th2 Deviation in Patients with Multiple Sclerosis. Immunol. Investig. 2016;45:679–691. doi:10.1080/08820139.2016.1208216. [PubMed] [CrossRef] [Google Scholar]

179. Brahmachari S., Pahan K. Sodium Benzoate, a Food Additive and a Metabolite of Cinnamon, Modifies T Cells at Multiple Steps and Inhibits Adoptive Transfer of Experimental Allergic Encephalomyelitis. J. Immunol. 2007;179:275–283. doi:10.4049/jimmunol.179.1.275. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

180. Mondal S., Pahan K. Cinnamon Ameliorates Experimental Allergic Encephalomyelitis in Mice via Regulatory T Cells: Implications for Multiple Sclerosis Therapy. PLoS ONE. 2015;10:e0116566. doi:10.1371/journal.pone.0116566. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Constantinescu C.S., Farooqi N., O’Brien K., Gran B. Experimental Autoimmune Encephalomyelitis (EAE) as a Model for Multiple Sclerosis (MS) Br. J. Pharmacol. 2011;164:1079–1106. doi:10.1111/j.1476-5381.2011.01302.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

182. Ma F., Wang H., Yang X., Wu Y., Liao C., Xie B., Li Y., Zhang W. Controlled Release of Ciliary Neurotrophic Factor from Bioactive Nerve Grafts Promotes Nerve Regeneration in Rats with Facial Nerve Injuries. J. Biomed. Mater. Res. Part A. 2022;110:788–796. doi:10.1002/jbm.a.37327. [PubMed] [CrossRef] [Google Scholar]

183. Kimura K. Regulatory T Cells in Multiple Sclerosis. Clin. Exp. Neuroimmunol. 2020;11:148–155. doi:10.1111/cen3.12591. [CrossRef] [Google Scholar]

184. Kundu M., Mondal S., Roy A., Martinson J.L., Pahan K. Sodium Benzoate, a Food Additive and a Metabolite of Cinnamon, Enriches Regulatory T Cells via STAT6-Mediated Upregulation of TGF-β J. Immunol. 2016;197:3099–3110. doi:10.4049/jimmunol.1501628. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

185. Raffaeli W., Arnaudo E. Pain as a Disease: An Overview. J. Pain Res. 2017;10:2003–2008. doi:10.2147/JPR.S138864. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

186. Chen X.-L., Li X.-Y., Qian S.-B., Wang Y.-C., Zhang P.-Z., Zhou X.-J., Wang Y.-X. Down-Regulation of Spinal d-Amino Acid Oxidase Expression Blocks Formalin-Induced Tonic Pain. Biochem. Biophys. Res. Commun. 2012;421:501–507. doi:10.1016/j.bbrc.2012.04.030. [PubMed] [CrossRef] [Google Scholar]

187. Zhao W., Konno R., Zhou X.-J., Yin M., Wang Y.-X. Inhibition of D-Amino-Acid Oxidase Activity Induces Pain Relief in Mice. Cell. Mol. Neurobiol. 2008;28:581–591. doi:10.1007/s10571-007-9200-y. [PubMed] [CrossRef] [Google Scholar]

188. Zhao W.-J., Gao Z.-Y., Wei H., Nie H.-Z., Zhao Q., Zhou X.-J., Wang Y.-X. Spinal D-Amino Acid Oxidase Contributes to Neuropathic Pain in Rats. J. Pharmacol. Exp. Ther. 2010;332:248–254. doi:10.1124/jpet.109.158816. [PubMed] [CrossRef] [Google Scholar]

189. Gong N., Gao Z.-Y., Wang Y.-C., Li X.-Y., Huang J.-L., Hashimoto K., Wang Y.-X. A Series of D-Amino Acid Oxidase Inhibitors Specifically Prevents and Reverses Formalin-Induced Tonic Pain in Rats. J. Pharmacol. Exp. Ther. 2011;336:282–293. doi:10.1124/jpet.110.172353. [PubMed] [CrossRef] [Google Scholar]

190. Wei H., Gong N., Huang J.-L., Fan H., Ma A.-N., Li X.-Y., Wang Y.-X., Pertovaara A. Spinal D-Amino Acid Oxidase Contributes to Mechanical Pain Hypersensitivity Induced by Sleep Deprivation in the Rat. Pharmacol. Biochem. Behav. 2013;111:30–36. doi:10.1016/j.pbb.2013.08.003. [PubMed] [CrossRef] [Google Scholar]

191. Blouin M., Han Y., Burch J., Farand J., Mellon C., Gaudreault M., Wrona M., Lévesque J.-F., Denis D., Mathieu M.-C., et al. The Discovery of 4-{1-[({2,5-Dimethyl-4-[4-(Trifluoromethyl)Benzyl]-3-Thienyl}carbonyl)Amino]Cyclopropyl}benzoic Acid (MK-2894), A Potent and Selective Prostaglandin E2 Subtype 4 Receptor Antagonist. J. Med. Chem. 2010;53:2227–2238. doi:10.1021/jm901771h. [PubMed] [CrossRef] [Google Scholar]

192. Kramar H., Stepaniuk H., Voloshchuk N., Taran I., Kovalenko S. Experimental study of pain-relieving mechanisms of 4-[4-oxo-(4h)-quinazolin-3-yl]-benzoic acid (PK-66 COMPOUND) Georgian Med. News. 2018;283:148–154. [PubMed] [Google Scholar]

193. Sheng J., Liu S., Wang Y., Cui R., Zhang X. The Link between Depression and Chronic Pain: Neural Mechanisms in the Brain. Neural Plast. 2017;2017:9724371. doi:10.1155/2017/9724371. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

194. Holmes A., Christelis N., Arnold C. Depression and Chronic Pain. Med. J. Aust. 2013;199:S17–S20. doi:10.5694/mja12.10589. [PubMed] [CrossRef] [Google Scholar]

195. Brown D., Rosenthal N., Könning A., Wager J. Intergenerational transmission of chronic pain-related disability: The explanatory effects of depressive symptoms. Pain. 2021;162:653. doi:10.1097/j.pain.0000000000002066. [PubMed] [CrossRef] [Google Scholar]

196. Lord C., Elsabbagh M., Baird G., Veenstra-Vanderweele J. Autism Spectrum Disorder. Lancet. 2018;392:508–520. doi:10.1016/S0140-6736(18)31129-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Lord C., Brugha T.S., Charman T., Cusack J., Dumas G., Frazier T., Jones E.J.H., Jones R.M., Pickles A., State M.W., et al. Autism Spectrum Disorder. Nat. Rev. Dis. Primers. 2020;6:5. doi:10.1038/s41572-019-0138-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

198. Hughes H.K., Mills Ko E., Rose D., Ashwood P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Front. Cell. Neurosci. 2018;12:405. doi:10.3389/fncel.2018.00405. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

199. Tzang R.-F., Chang C.-H., Chang Y.-C., Lane H.-Y. Autism Associated With Anti-NMDAR Encephalitis: Glutamate-Related Therapy. Front. Psychiatry. 2019;10:440. doi:10.3389/fpsyt.2019.00440. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

200. Moaaz M., Youssry S., Elfatatry A., El Rahman M.A. Th17/Treg Cells Imbalance and Their Related Cytokines (IL-17, IL-10 and TGF-β) in Children with Autism Spectrum Disorder. J. Neuroimmunol. 2019;337:577071. doi:10.1016/j.jneuroim.2019.577071. [PubMed] [CrossRef] [Google Scholar]

201. Li X., Chauhn A., Shiekh A.M., Patil S., Chauhn V., Li X.-M., Ji L., Brown T., Malik M. Elevated Immune Response in the Brain of Autistic Patients. J. Neuroimmunol. 2009;207:111–116. doi:10.1016/j.jneuroim.2008.12.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

202. Zheng H.-F., Wang W.-Q., Li X.-M., Rauw G., Baker G.B. Body Fluid Levels of Neuroactive Amino Acids in Autism Spectrum Disorders: A Review of the Literature. Amino Acids. 2017;49:57–65. doi:10.1007/s00726-016-2332-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

203. Yang P. A Pilot Trial of Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, Added on Augmentative and Alternative Communication Intervention for Non-Communicative Children with Autism Spectrum Disorders. Transl. Med. 2017;7:1000192. doi:10.4172/2161-1025.1000192. [CrossRef] [Google Scholar]

204. Görker I., Tüzün Ü. Autistic-like Findings Associated with a Urea Cycle Disorder in a 4-Year-Old Girl. J. Psychiatry Neurosci. 2005;30:133–135. [PMC free article] [PubMed] [Google Scholar]

205. Kernohan K.D., McBride A., Hartley T., Rojas S.K., Care4Rare Canada Consortium. Dyment D.A., Boycott K.M., Dyack S. P21 Protein-Activated Kinase 1 Is Associated with Severe Regressive Autism, and Epilepsy. Clin. Genet. 2019;96:449–455. doi:10.1111/cge.13618. [PubMed] [CrossRef] [Google Scholar]

206. Fuentes-Albero M., Cauli O. hom*ocysteine Levels in Autism Spectrum Disorder: A Clinical Update. Endocr Metab Immune Disord. Drug Targets. 2018;18:289–296. doi:10.2174/1871530318666180213110815. [PubMed] [CrossRef] [Google Scholar]

207. Guo B.-Q., Li H.-B., Ding S.-B. Blood hom*ocysteine Levels in Children with Autism Spectrum Disorder: An Updated Systematic Review and Meta-Analysis. Psychiatry Res. 2020;291:113283. doi:10.1016/j.psychres.2020.113283. [PubMed] [CrossRef] [Google Scholar]

208. Sweeten T.L., Posey D.J., McDougle C.J. High Blood Monocyte Counts and Neopterin Levels in Children With Autistic Disorder. Am. J. Psychiatry. 2003;160:1691–1693. doi:10.1176/appi.ajp.160.9.1691. [PubMed] [CrossRef] [Google Scholar]

209. Zhao H., Yin S., Fan J. High Plasma Neopterin Levels in Chinese Children with Autism Spectrum Disorders. Int. J. Dev. Neurosci. 2015;41:92–97. doi:10.1016/j.ijdevneu.2015.02.002. [PubMed] [CrossRef] [Google Scholar]

210. Boccuto L., Chen C.-F., Pittman A.R., Skinner C.D., McCartney H.J., Jones K., Bochner B.R., Stevenson R.E., Schwartz C.E. Decreased Tryptophan Metabolism in Patients with Autism Spectrum Disorders. Mol. Autism. 2013;4:16. doi:10.1186/2040-2392-4-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

211. Kałużna-Czaplińska J., Jóźwik-Pruska J., Chirumbolo S., Bjørklund G. Tryptophan Status in Autism Spectrum Disorder and the Influence of Supplementation on Its Level. Metab. Brain Dis. 2017;32:1585–1593. doi:10.1007/s11011-017-0045-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Sodium Benzoate—Harmfulness and Potential Use in Therapies for Disorders Related to the Nervous System: A Review (2024)
Top Articles
Unitus Cd Rates
Sulphur Springs Gun Show
Hotels
Jonathon Kinchen Net Worth
What are Dietary Reference Intakes?
Seething Storm 5E
Western Razor David Angelo Net Worth
True Statement About A Crown Dependency Crossword
Epaper Pudari
Best Pawn Shops Near Me
Hssn Broadcasts
Readyset Ochsner.org
Check From Po Box 1111 Charlotte Nc 28201
Average Salary in Philippines in 2024 - Timeular
Classic | Cyclone RakeAmerica's #1 Lawn and Leaf Vacuum
Strange World Showtimes Near Roxy Stadium 14
Indystar Obits
Eine Band wie ein Baum
Myhr North Memorial
Ivegore Machete Mutolation
Aes Salt Lake City Showdown
R. Kelly Net Worth 2024: The King Of R&B's Rise And Fall
Red8 Data Entry Job
Bleacher Report Philadelphia Flyers
Costco Jobs San Diego
Smartfind Express Login Broward
Access a Shared Resource | Computing for Arts + Sciences
Jailfunds Send Message
Our 10 Best Selfcleaningcatlitterbox in the US - September 2024
Bernie Platt, former Cherry Hill mayor and funeral home magnate, has died at 90
Prima Healthcare Columbiana Ohio
Consume Oakbrook Terrace Menu
Skip The Games Ventura
Wildfangs Springfield
Uc Santa Cruz Events
Nearest Ups Office To Me
NHL training camps open with Swayman's status with the Bruins among the many questions
Guy Ritchie's The Covenant Showtimes Near Grand Theatres - Bismarck
Arigreyfr
COVID-19/Coronavirus Assistance Programs | FindHelp.org
Citibank Branch Locations In North Carolina
Yakini Q Sj Photos
How To Customise Mii QR Codes in Tomodachi Life?
Pixel Gun 3D Unblocked Games
N33.Ultipro
Underground Weather Tropical
Okta Login Nordstrom
Rubmaps H
The Goshen News Obituary
Peugeot-dealer Hedin Automotive: alles onder één dak | Hedin
28 Mm Zwart Spaanplaat Gemelamineerd (U999 ST9 Matte | RAL9005) Op Maat | Zagen Op Mm + ABS Kantenband
Bones And All Showtimes Near Emagine Canton
Latest Posts
Article information

Author: Fredrick Kertzmann

Last Updated:

Views: 6617

Rating: 4.6 / 5 (46 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Fredrick Kertzmann

Birthday: 2000-04-29

Address: Apt. 203 613 Huels Gateway, Ralphtown, LA 40204

Phone: +2135150832870

Job: Regional Design Producer

Hobby: Nordic skating, Lacemaking, Mountain biking, Rowing, Gardening, Water sports, role-playing games

Introduction: My name is Fredrick Kertzmann, I am a gleaming, encouraging, inexpensive, thankful, tender, quaint, precious person who loves writing and wants to share my knowledge and understanding with you.