Protein Synthesis Initiation in Eukaryotic Cells (2024)

*Reference is also in this collection.

Abramson RD, Dever TE, Lawson TG, Ray BK, Thach RE, Merrick WC. 1987. The ATP-dependent interaction of eukaryotic initiation factors with mRNA. J Biol Chem262: 3826–3832. [PubMed] [Google Scholar]

Aitken CE, Beznoskova P, Vlckova V, Chiu WL, Zhou F, Valasek LS, Hinnebusch AG, Lorsch JR. 2016. Eukaryotic translation initiation factor 3 plays distinct roles at the mRNA entry and exit channels of the ribosomal preinitiation complex. eLife5: e20934. [PMC free article] [PubMed] [Google Scholar]

Algire MA, Maag D, Lorsch JR. 2005. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol Cell20: 251–262. [PubMed] [Google Scholar]

Alone PV, Dever TE. 2006. Direct binding of translation initiation factor eIF2γ-G domain to its GTPase-activating and GDP-GTP exchange factors eIF5 and eIF2Bɛ. J Biol Chem281: 12636–12644. [PubMed] [Google Scholar]

Archer SK, Shirokikh NE, Hallwirth CV, Beilharz TH, Preiss T. 2015. Probing the closed-loop model of mRNA translation in living cells. RNA Biol12: 248–254. [PMC free article] [PubMed] [Google Scholar]

Archer SK, Shirokikh NE, Beilharz TH, Preiss T. 2016. Dynamics of ribosome scanning and recycling revealed by translation complex profiling. Nature535: 570–574. [PubMed] [Google Scholar]

Asano K, Clayton J, Shalev A, Hinnebusch AG. 2000. A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev14: 2534–2546. [PMC free article] [PubMed] [Google Scholar]

Aylett CH, Boehringer D, Erzberger JP, Schaefer T, Ban N. 2015. Structure of a yeast 40S-eIF1-eIF1A-eIF3-eIF3j initiation complex. Nat Struct Mol Biol22: 269–271. [PubMed] [Google Scholar]

Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C, Sonenberg N, Kay LE, Forman-Kay JD. 2015. Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature519: 106–109. [PubMed] [Google Scholar]

Berthelot K, Muldoon M, Rajkowitsch L, Hughes J, McCarthy JE. 2004. Dynamics and processivity of 40S ribosome scanning on mRNA in yeast. Mol Microbiol51: 987–1001. [PubMed] [Google Scholar]

Beznoskova P, Wagner S, Jansen ME, von der Haar T, Valasek LS. 2015. Translation initiation factor eIF3 promotes programmed stop codon readthrough. Nucleic Acids Res43: 5099–5111. [PMC free article] [PubMed] [Google Scholar]

Boesen T, Mohammad SS, Pavitt GD, Andersen GR. 2004. Structure of the catalytic fragment of translation initiation factor 2B and identification of a critically important catalytic residue. J Biol Chem279: 10584–10592. [PubMed] [Google Scholar]

Calvo SE, Pagliarini DJ, Mootha VK. 2009. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci106: 7507–7512. [PMC free article] [PubMed] [Google Scholar]

Cheung YN, Maag D, Mitchell SF, Fekete CA, Algire MA, Takacs JE, Shirokikh N, Pestova T, Lorsch JR, Hinnebusch AG. 2007. Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo. Genes Dev21: 1217–1230. [PMC free article] [PubMed] [Google Scholar]

Choi SK, Olsen DS, Roll-Mecak A, Martung A, Remo KL, Burley SK, Hinnebusch AG, Dever TE. 2000. Physical and functional interaction between the eukaryotic orthologs of prokaryotic translation initiation factors IF1 and IF2. Mol Cell Biol20: 7183–7191. [PMC free article] [PubMed] [Google Scholar]

Chu D, Kazana E, Bellanger N, Singh T, Tuite MF, von der Haar T. 2014. Translation elongation can control translation initiation on eukaryotic mRNAs. EMBO J33: 21–34. [PMC free article] [PubMed] [Google Scholar]

Costello J, Castelli LM, Rowe W, Kershaw CJ, Talavera D, Mohammad-Qureshi SS, Sims PF, Grant CM, Pavitt GD, Hubbard SJ, et al. 2015. Global mRNA selection mechanisms for translation initiation. Genome Biol16: 10. [PMC free article] [PubMed] [Google Scholar]

Costello JL, Kershaw CJ, Castelli LM, Talavera D, Rowe W, Sims PFG, Ashe MP, Grant CM, Hubbard SJ, Pavitt GD. 2017. Dynamic changes in eIF4F-mRNA interactions revealed by global analyses of environmental stress responses. Genome Biol18: 201. [PMC free article] [PubMed] [Google Scholar]

Das S, Maitra U. 2001. Functional significance and mechanism of eIF5-promoted GTP hydrolysis in eukaryotic translation initiation. Prog Nucleic Acid Res Mol Biol70: 207–231. [PubMed] [Google Scholar]

Dennis MD, Person MD, Browning KS. 2009. Phosphorylation of plant translation initiation factors by CK2 enhances the in vitro interaction of multifactor complex components. J Biol Chem284: 20615–20628. [PMC free article] [PubMed] [Google Scholar]

des Georges A, Dhote V, Kuhn L, Hellen CU, Pestova TV, Frank J, Hashem Y. 2015. Structure of mammalian eIF3 in the context of the 43S preinitiation complex. Nature525: 491–495. [PMC free article] [PubMed] [Google Scholar]

Dever TE, Feng L, Wek RC, Cigan AM, Donahue TF, Hinnebusch AG. 1992. Phosphorylation of initiation factor 2 α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell68: 585–596. [PubMed] [Google Scholar]

Dever TE, Kinzy TG, Pavitt GD. 2016. Mechanism and regulation of protein synthesis in Saccharomyces cerevisiae. Genetics203: 65–107. [PMC free article] [PubMed] [Google Scholar]

Dmitriev SE, Pisarev AV, Rubtsova MP, Dunaevsky YE, Shatsky IN. 2003. Conversion of 48S translation preinitiation complexes into 80S initiation complexes as revealed by toeprinting. FEBS Lett533: 99–104. [PubMed] [Google Scholar]

Dmitriev SE, Terenin IM, Andreev DE, Ivanov PA, Dunaevsky JE, Merrick WC, Shatsky IN. 2010. GTP-independent tRNA delivery to the ribosomal P-site by a novel eukaryotic translation factor. J Biol Chem285: 26779–26787. [PMC free article] [PubMed] [Google Scholar]

Dong J, Munoz A, Kolitz SE, Saini AK, Chiu WL, Rahman H, Lorsch JR, Hinnebusch AG. 2014. Conserved residues in yeast initiator tRNA calibrate initiation accuracy by regulating preinitiation complex stability at the start codon. Genes Dev28: 502–520. [PMC free article] [PubMed] [Google Scholar]

Drabkin HJ, Helk B, RajBhandary UL. 1993. The role of nucleotides conserved in eukaryotic initiator methionine tRNAs in initiation of protein synthesis. J Biol Chem268: 25221–25228. [PubMed] [Google Scholar]

Duncan R, Hershey JW. 1983. Identification and quantitation of levels of protein synthesis initiation factors in crude HeLa cell lysates by two-dimensional polyacrylamide gel electrophoresis. J Biol Chem258: 7228–7235. [PubMed] [Google Scholar]

Elbarghati L, Murdoch C, Lewis CE. 2008. Effects of hypoxia on transcription factor expression in human monocytes and macrophages. Immunobiology213: 899–908. [PubMed] [Google Scholar]

Elfakess R, Sinvani H, Haimov O, Svitkin Y, Sonenberg N, Dikstein R. 2011. Unique translation initiation of mRNAs-containing TISU element. Nucleic Acids Res39: 7598–7609. [PMC free article] [PubMed] [Google Scholar]

Erickson FL, Hannig EM. 1996. Ligand interactions with eukaryotic translation initiation factor 2: Role of the γ-subunit. EMBO J15: 6311–6320. [PMC free article] [PubMed] [Google Scholar]

Erzberger JP, Stengel F, Pellarin R, Zhang S, Schaefer T, Aylett CH, Cimermancic P, Boehringer D, Sali A, Aebersold R, et al. 2014. Molecular architecture of the 40S•eIF1•eIF3 translation initiation complex. Cell158: 1123–1135. [PMC free article] [PubMed] [Google Scholar]

Fekete CA, Mitchell SF, Cherkasova VA, Applefield D, Algire MA, Maag D, Saini AK, Lorsch JR, Hinnebusch AG. 2007. N- and C-terminal residues of eIF1A have opposing effects on the fidelity of start codon selection. EMBO J26: 1602–1614. [PMC free article] [PubMed] [Google Scholar]

Feoktistova K, Tuvshintogs E, Do A, Fraser CS. 2013. Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity. Proc Natl Acad Sci110: 13339–13344. [PMC free article] [PubMed] [Google Scholar]

Fernandez IS, Bai XC, Hussain T, Kelley AC, Lorsch JR, Ramakrishnan V, Scheres SH. 2013. Molecular architecture of a eukaryotic translational initiation complex. Science342: 1240585. [PMC free article] [PubMed] [Google Scholar]

Fraser CS, Berry KE, Hershey JW, Doudna JA. 2007. eIF3j is located in the decoding center of the human 40S ribosomal subunit. Mol Cell26: 811–819. [PubMed] [Google Scholar]

Fringer JM, Acker MG, Fekete CA, Lorsch JR, Dever TE. 2007. Coupled release of eukaryotic translation initiation factors 5B and 1A from 80S ribosomes following subunit joining. Mol Cell Biol27: 2384–2397. [PMC free article] [PubMed] [Google Scholar]

Gao Z, Putnam AA, Bowers HA, Guenther UP, Ye X, Kindsfather A, Hilliker AK, Jankowsky E. 2016. Coupling between the DEAD-box RNA helicases Ded1p and eIF4A. eLife5: e16408. [PMC free article] [PubMed] [Google Scholar]

García-García C, Frieda KL, Feoktistova K, Fraser CS, Block SM. 2015. Factor-dependent processivity in human eIF4A DEAD-box helicase. Science348: 1486–1488. [PMC free article] [PubMed] [Google Scholar]

Gordiyenko Y, Schmidt C, Jennings MD, Matak-Vinkovic D, Pavitt GD, Robinson CV. 2014. eIF2B is a decameric guanine nucleotide exchange factor with a γ2ɛ2 tetrameric core. Nat Commun5: 3902. [PMC free article] [PubMed] [Google Scholar]

Grifo JA, Abramson RD, Satler CA, Merrick WC. 1984. RNA-stimulated ATPase activity of eukaryotic initiation factors. J Biol Chem259: 8648–8654. [PubMed] [Google Scholar]

Gross JD, Moerke NJ, von der Haar T, Lugovskoy AA, Sachs AB, McCarthy JE, Wagner G. 2003. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell115: 739–750. [PubMed] [Google Scholar]

Gruner S, Peter D, Weber R, Wohlbold L, Chung MY, Weichenrieder O, Valkov E, Igreja C, Izaurralde E. 2016. The structures of eIF4E–eIF4G complexes reveal an extended interface to regulate translation initiation. Mol Cell64: 467–479. [PubMed] [Google Scholar]

Gunisova S, Valasek LS. 2014. Fail-safe mechanism of GCN4 translational control—uORF2 promotes reinitiation by analogous mechanism to uORF1 and thus secures its key role in GCN4 expression. Nucleic Acids Res42: 5880–5893. [PMC free article] [PubMed] [Google Scholar]

Haimov O, Sinvani H, Martin F, Ulitsky I, Emmanuel R, Tamarkin-Ben-Harush A, Vardy A, Dikstein R. 2017. Efficient and accurate translation initiation directed by TISU involves RPS3 and RPS10e binding and differential eukaryotic initiation factor 1A regulation. Mol Cell Biol37: e00150. [PMC free article] [PubMed] [Google Scholar]

Harms U, Andreou AZ, Gubaev A, Klostermeier D. 2014. eIF4B, eIF4G and RNA regulate eIF4A activity in translation initiation by modulating the eIF4A conformational cycle. Nucleic Acids Res42: 7911–7922. [PMC free article] [PubMed] [Google Scholar]

Hashem Y, des Georges A, Dhote V, Langlois R, Liao HY, Grassucci RA, Hellen CU, Pestova TV, Frank J. 2013a. Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29. Cell153: 1108–1119. [PMC free article] [PubMed] [Google Scholar]

Hashem Y, des Georges A, Dhote V, Langlois R, Liao HY, Grassucci RA, Pestova TV, Hellen CU, Frank J. 2013b. Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit. Nature503: 539–543. [PMC free article] [PubMed] [Google Scholar]

* Hellen CUT. 2018. Translation termination and ribosome recycling in eukaryotes. Cold Spring Harb Perspect Biol 10.1101/cshperspect.a032656. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Hinnebusch AG. 2014. The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem83: 779–812. [PubMed] [Google Scholar]

Hinnebusch AG. 2017. Structural insights into the mechanism of scanning and start codon recognition in eukaryotic translation initiation. Trends Biochem Sci42: 589–611. [PubMed] [Google Scholar]

Hinnebusch AG, Lorsch JR. 2012. The mechanism of eukaryotic translation initiation: New insights and challenges. Cold Spring Harb Perspect Biol4: a011544. [PMC free article] [PubMed] [Google Scholar]

Hinnebusch AG, Ivanov IP, Sonenberg N. 2016. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science352: 1413–1416. [PMC free article] [PubMed] [Google Scholar]

Hussain T, Llacer JL, Fernandez IS, Munoz A, Martin-Marcos P, Savva CG, Lorsch JR, Hinnebusch AG, Ramakrishnan V. 2014. Structural changes enable start codon recognition by the eukaryotic translation initiation complex. Cell159: 597–607. [PMC free article] [PubMed] [Google Scholar]

Ivanov IP, Loughran G, Sachs MS, Atkins JF. 2010. Initiation context modulates autoregulation of eukaryotic translation initiation factor 1 (eIF1). Proc Natl Acad Sci107: 18056–18060. [PMC free article] [PubMed] [Google Scholar]

Jackson RJ, Hellen CU, Pestova TV. 2010. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol11: 113–127. [PMC free article] [PubMed] [Google Scholar]

Jankowsky E, Gross CH, Shuman S, Pyle AM. 2001. Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science291: 121–125. [PubMed] [Google Scholar]

Jennings MD, Pavitt GD. 2010. eIF5 has GDI activity necessary for translational control by eIF2 phosphorylation. Nature465: 378–381. [PMC free article] [PubMed] [Google Scholar]

Jennings MD, Zhou Y, Mohammad-Qureshi SS, Bennett D, Pavitt GD. 2013. eIF2B promotes eIF5 dissociation from eIF2*GDP to facilitate guanine nucleotide exchange for translation initiation. Genes Dev27: 2696–2707. [PMC free article] [PubMed] [Google Scholar]

Jennings MD, Kershaw CJ, White C, Hoyle D, Richardson JP, Costello JL, Donaldson IJ, Zhou Y, Pavitt GD. 2016. eIF2β is critical for eIF5-mediated GDP-dissociation inhibitor activity and translational control. Nucleic Acids Res44: 9698–9709. [PMC free article] [PubMed] [Google Scholar]

Jennings MD, Kershaw CJ, Adomavicius T, Pavitt GD. 2017. Fail-safe control of translation initiation by dissociation of eIF2α phosphorylated ternary complexes. eLife6: e24542. [PMC free article] [PubMed] [Google Scholar]

* Jobe A, Liu Z, Gutierrez-Vargas C, Frank J. 2018. New insights into ribosome structure and function. Cold Spring Harb Perspect Biol 10.1101/cshperspect.a032615. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Kapp LD, Lorsch JR. 2004. GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2. J Mol Biol335: 923–936. [PubMed] [Google Scholar]

Kapp LD, Kolitz SE, Lorsch JR. 2006. Yeast initiator tRNA identity elements cooperate to influence multiple steps of translation initiation. RNA12: 751–764. [PMC free article] [PubMed] [Google Scholar]

Kashiwagi K, Takahashi M, Nishimoto M, Hiyama TB, Higo T, Umehara T, Sakamoto K, Ito T, Yokoyama S. 2016. Crystal structure of eukaryotic translation initiation factor 2B. Nature531: 122–125. [PubMed] [Google Scholar]

Kearse MG, Wilusz JE. 2017. Non-AUG translation: A new start for protein synthesis in eukaryotes. Genes Dev31: 1717–1731. [PMC free article] [PubMed] [Google Scholar]

Khoshnevis S, Gunisova S, Vlckova V, Kouba T, Neumann P, Beznoskova P, Ficner R, Valasek LS. 2014. Structural integrity of the PCI domain of eIF3a/TIF32 is required for mRNA recruitment to the 43S pre-initiation complexes. Nucleic Acids Res42: 4123–4139. [PMC free article] [PubMed] [Google Scholar]

Kim JH, Park SM, Park JH, Keum SJ, Jang SK. 2011. eIF2A mediates translation of hepatitis C viral mRNA under stress conditions. EMBO J30: 2454–2464. [PMC free article] [PubMed] [Google Scholar]

Kolitz SE, Lorsch JR. 2010. Eukaryotic initiator tRNA: Finely tuned and ready for action. FEBS Lett584: 396–404. [PMC free article] [PubMed] [Google Scholar]

Kolupaeva VG, Unbehaun A, Lomakin IB, Hellen CU, Pestova TV. 2005. Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA11: 470–486. [PMC free article] [PubMed] [Google Scholar]

Korets SB, Czok S, Blank SV, Curtin JP, Schneider RJ. 2011. Targeting the mTOR/4E-BP pathway in endometrial cancer. Clin Cancer Res17: 7518–7528. [PubMed] [Google Scholar]

Kozak M. 1980. Role of ATP in binding and migration of 40S ribosomal subunits. Cell22: 459–467. [PubMed] [Google Scholar]

Kuhle B, Ficner R. 2014. eIF5B employs a novel domain release mechanism to catalyze ribosomal subunit joining. EMBO J33: 1177–1191. [PMC free article] [PubMed] [Google Scholar]

Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M. 2014. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods11: 319–324. [PubMed] [Google Scholar]

Kumar P, Hellen CU, Pestova TV. 2016. Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs. Genes Dev30: 1573–1588. [PMC free article] [PubMed] [Google Scholar]

* Kwan T, Thompson SR. 2018. Noncanonical translation initiation in eukaryotes. Cold Spring Harb Perspect Biol 10.1101/cshperspect.a032672. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Lankat-Buttgereit B, Goke R. 2009. The tumour suppressor Pdcd4: Recent advances in the elucidation of function and regulation. Biol Cell101: 309–317. [PubMed] [Google Scholar]

Lee AS, Kranzusch PJ, Doudna JA, Cate JH. 2016. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature536: 96–99. [PMC free article] [PubMed] [Google Scholar]

Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K, Schnier J, Slonimski PP. 1989. Birth of the D-E-A-D box. Nature337: 121–122. [PubMed] [Google Scholar]

Llacer JL, Hussain T, Marler L, Aitken CE, Thakur A, Lorsch JR, Hinnebusch AG, Ramakrishnan V. 2015. Conformational differences between open and closed states of the eukaryotic translation initiation complex. Mol Cell59: 399–412. [PMC free article] [PubMed] [Google Scholar]

Lorsch JR, Herschlag D. 1998. The DEAD-box protein eIF4A. 1: A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. Biochemistry37: 2180–2193. [PubMed] [Google Scholar]

Loughran G, Sachs MS, Atkins JF, Ivanov IP. 2012. Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5. Nucleic Acids Res40: 2898–2906. [PMC free article] [PubMed] [Google Scholar]

Luna RE, Arthanari H, Hiraishi H, Nanda J, Martin-Marcos P, Markus MA, Akabayov B, Milbradt AG, Luna LE, Seo HC, et al. 2012. The C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2β. Cell Rep1: 689–702. [PMC free article] [PubMed] [Google Scholar]

Luna RE, Arthanari H, Hiraishi H, Akabayov B, Tang L, Cox C, Markus MA, Luna LE, Ikeda Y, Watanabe R, et al. 2013. The interaction between eukaryotic initiation factor 1A and eIF5 retains eIF1 within scanning preinitiation complexes. Biochemistry52: 9510–9518. [PMC free article] [PubMed] [Google Scholar]

Maag D, Fekete CA, Gryczynski Z, Lorsch JR. 2005. A conformational change in the eukaryotic translation preinitiation complex and release of eIF1 signal recognition of the start codon. Mol Cell17: 265–275. [PubMed] [Google Scholar]

Majumdar R, Maitra U. 2005. Regulation of GTP hydrolysis prior to ribosomal AUG selection during eukaryotic translation initiation. EMBO J24: 3737–3746. [PMC free article] [PubMed] [Google Scholar]

Majumdar R, Bandyopadhyay A, Maitra U. 2003. Mammalian translation initiation factor eIF1 functions with eIF1A and eIF3 in the formation of a stable 40S preinitiation complex. J Biol Chem278: 6580–6587. [PubMed] [Google Scholar]

Malys N, McCarthy JE. 2011. Translation initiation: Variations in the mechanism can be anticipated. Cell Mol Life Sci68: 991–1003. [PMC free article] [PubMed] [Google Scholar]

Marintchev A, Kolupaeva VG, Pestova TV, Wagner G. 2003. Mapping the binding interface between human eukaryotic initiation factors 1A and 5B: A new interaction between old partners. Proc Natl Acad Sci100: 1535–1540. [PMC free article] [PubMed] [Google Scholar]

Martin-Marcos P, Cheung YN, Hinnebusch AG. 2011. Functional elements in initiation factors 1, 1A, and 2β discriminate against poor AUG context and non-AUG start codons. Mol Cell Biol31: 4814–4831. [PMC free article] [PubMed] [Google Scholar]

Martin-Marcos P, Nanda J, Luna RE, Wagner G, Lorsch JR, Hinnebusch AG. 2013. β-Hairpin loop of eukaryotic initiation factor 1 (eIF1) mediates 40S ribosome binding to regulate initiator tRNA(Met) recruitment and accuracy of AUG selection in vivo. J Biol Chem288: 27546–27562. [PMC free article] [PubMed] [Google Scholar]

Merrick WC. 2015. eIF4F: A retrospective. J Biol Chem290: 24091–24099. [PMC free article] [PubMed] [Google Scholar]

Merrick WC, Anderson WF. 1975. Purification and characterization of hom*ogeneous protein synthesis initiation factor M1 from rabbit reticulocytes. J Biol Chem250: 1197–1206. [PubMed] [Google Scholar]

Merrick WC, Kemper WM, Anderson WF. 1975. Purification and characterization of hom*ogeneous initiation factor M2A from rabbit reticulocytes. J Biol Chem250: 5556–5562. [PubMed] [Google Scholar]

Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR. 2015. 5′UTR m6A promotes cap-independent translation. Cell163: 999–1010. [PMC free article] [PubMed] [Google Scholar]

Mitchell SF, Walker SE, Algire MA, Park EH, Hinnebusch AG, Lorsch JR. 2010. The 5′-7-methylguanosine cap on eukaryotic mRNAs serves both to stimulate canonical translation initiation and to block an alternative pathway. Mol Cell39: 950–962. [PMC free article] [PubMed] [Google Scholar]

Mohammad MP, Munzarova Pondelickova V, Zeman J, Gunisova S, Valasek LS. 2017. In vivo evidence that eIF3 stays bound to ribosomes elongating and terminating on short upstream ORFs to promote reinitiation. Nucleic Acids Res45: 2658–2674. [PMC free article] [PubMed] [Google Scholar]

Mohammad-Qureshi SS, Haddad R, Hemingway EJ, Richardson JP, Pavitt GD. 2007. Critical contacts between the eukaryotic initiation factor 2B (eIF2B) catalytic domain and both eIF2β and -2γ mediate guanine nucleotide exchange. Mol Cell Biol27: 5225–5234. [PMC free article] [PubMed] [Google Scholar]

Munzarova V, Panek J, Gunisova S, Danyi I, Szamecz B, Valasek LS. 2011. Translation reinitiation relies on the interaction between eIF3a/TIF32 and progressively folded cis-acting mRNA elements preceding short uORFs. PLoS Genet7: e1002137. [PMC free article] [PubMed] [Google Scholar]

Nag N, Lin KY, Edmonds KA, Yu J, Nadkarni D, Marintcheva B, Marintchev A. 2016. eIF1A/eIF5B interaction network and its functions in translation initiation complex assembly and remodeling. Nucleic Acids Res44: 7441–7456. [PMC free article] [PubMed] [Google Scholar]

Nanda JS, Saini AK, Munoz AM, Hinnebusch AG, Lorsch JR. 2013. Coordinated movements of eukaryotic translation initiation factors eIF1, eIF1A, and eIF5 trigger phosphate release from eIF2 in response to start codon recognition by the ribosomal preinitiation complex. J Biol Chem288: 5316–5329. [PMC free article] [PubMed] [Google Scholar]

Naveau M, Lazennec-Schurdevin C, Panvert M, Dubiez E, Mechulam Y, Schmitt E. 2013. Roles of yeast eIF2α and eIF2β subunits in the binding of the initiator methionyl-tRNA. Nucleic Acids Res41: 1047–1057. [PMC free article] [PubMed] [Google Scholar]

Obayashi E, Luna RE, Nagata T, Martin-Marcos P, Hiraishi H, Singh CR, Erzberger JP, Zhang F, Arthanari H, Morris J, et al. 2017. Molecular landscape of the ribosome pre-initiation complex during mRNA scanning: Structural role for eIF3c and its control by eIF5. Cell Rep18: 2651–2663. [PMC free article] [PubMed] [Google Scholar]

O’Leary SE, Petrov A, Chen J, Puglisi JD. 2013. Dynamic recognition of the mRNA cap by Saccharomyces cerevisiae eIF4E. Structure21: 2197–2207. [PMC free article] [PubMed] [Google Scholar]

Olsen DS, Savner EM, Mathew A, Zhang F, Krishnamoorthy T, Phan L, Hinnebusch AG. 2003. Domains of eIF1A that mediate binding to eIF2, eIF3, and eIF5B and promote ternary complex recruitment in vivo. EMBO J22: 193–204. [PMC free article] [PubMed] [Google Scholar]

Panniers R, Rowlands AG, Henshaw EC. 1988. The effect of Mg2+ and guanine nucleotide exchange factor on the binding of guanine nucleotides to eukaryotic initiation factor 2. J Biol Chem263: 5519–5525. [PubMed] [Google Scholar]

Park EH, Walker SE, Lee JM, Rothenburg S, Lorsch JR, Hinnebusch AG. 2011. Multiple elements in the eIF4G1 N-terminus promote assembly of eIF4G1*PABP mRNPs in vivo. EMBO J30: 302–316. [PMC free article] [PubMed] [Google Scholar]

Parsyan A, Svitkin Y, Shahbazian D, Gkogkas C, Lasko P, Merrick WC, Sonenberg N. 2011. mRNA helicases: The tacticians of translational control. Nat Rev Mol Cell Biol12: 235–245. [PubMed] [Google Scholar]

Passmore LA, Schmeing TM, Maag D, Applefield DJ, Acker MG, Algire MA, Lorsch JR, Ramakrishnan V. 2007. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol Cell26: 41–50. [PubMed] [Google Scholar]

Paulin FE, Campbell LE, O'Brien K, Loughlin J, Proud CG. 2001. Eukaryotic translation initiation factor 5 (eIF5) acts as a classical GTPase-activator protein. Curr Biol11: 55–59. [PubMed] [Google Scholar]

Pause A, Methot N, Svitkin Y, Merrick WC, Sonenberg N. 1994. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J13: 1205–1215. [PMC free article] [PubMed] [Google Scholar]

Pavitt GD. 2005. eIF2B, a mediator of general and gene-specific translational control. Biochem Soc Trans33: 1487–1492. [PubMed] [Google Scholar]

Pavitt GD, Ramaiah KV, Kimball SR, Hinnebusch AG. 1998. eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. Genes Dev12: 514–526. [PMC free article] [PubMed] [Google Scholar]

* Peer E, Mosh*tch-Moshkovitz S, Rechavi G, Dominissini D. 2018. The epitranscriptome in translation regulation. Cold Spring Harb Perspect Biol 10.1101/cshperspect.a032623. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Pelletier J, Sonenberg N. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature334: 320–325. [PubMed] [Google Scholar]

Pestova TV, Borukhov SI, Hellen CU. 1998. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature394: 854–859. [PubMed] [Google Scholar]

Pestova TV, de Breyne S, Pisarev AV, Abaeva IS, Hellen CU. 2008. eIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: A common role of domain II. EMBO J27: 1060–1072. [PMC free article] [PubMed] [Google Scholar]

Peterson DT, Merrick WC, Safer B. 1979. Binding and release of radiolabeled eukaryotic initiation factors 2 and 3 during 80S initiation complex formation. J Biol Chem254: 2509–2516. [PubMed] [Google Scholar]

Pisarev AV, Kolupaeva VG, Pisareva VP, Merrick WC, Hellen CU, Pestova TV. 2006. Specific functional interactions of nucleotides at key −3 and +4 positions flanking the initiation codon with components of the mammalian 48S translation initiation complex. Genes Dev20: 624–636. [PMC free article] [PubMed] [Google Scholar]

Pisarev AV, Hellen CU, Pestova TV. 2007. Recycling of eukaryotic posttermination ribosomal complexes. Cell131: 286–299. [PMC free article] [PubMed] [Google Scholar]

Pisarev AV, Kolupaeva VG, Yusupov MM, Hellen CU, Pestova TV. 2008. Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. EMBO J27: 1609–1621. [PMC free article] [PubMed] [Google Scholar]

Pisareva VP, Pisarev AV. 2014. eIF5 and eIF5B together stimulate 48S initiation complex formation during ribosomal scanning. Nucleic Acids Res42: 12052–12069. [PMC free article] [PubMed] [Google Scholar]

Pisareva VP, Pisarev AV, Komar AA, Hellen CU, Pestova TV. 2008. Translation initiation on mammalian mRNAs with structured 5′UTRs requires DExH-box protein DHX29. Cell135: 1237–1250. [PMC free article] [PubMed] [Google Scholar]

* Proud CG. 2018. Regulation of translation by cap-binding proteins. Cold Spring Harb Perspect Biol 10.1101/cshperspect.a033050. [CrossRef] [Google Scholar]

Rajagopal V, Park EH, Hinnebusch AG, Lorsch JR. 2012. Specific domains in yeast translation initiation factor eIF4G strongly bias RNA unwinding activity of the eIF4F complex toward duplexes with 5′-overhangs. J Biol Chem287: 20301–20312. [PMC free article] [PubMed] [Google Scholar]

Richter JD, Sonenberg N. 2005. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature433: 477–480. [PubMed] [Google Scholar]

* Rodnina MV. 2018. Translation in prokaryotes. Cold Spring Harb Perspect Biol 10.1101/cshperspect.a032664. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Rogers GW Jr, Richter NJ, Lima WF, Merrick WC. 2001. Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. J Biol Chem276: 30914–30922. [PubMed] [Google Scholar]

Rogers DW, Bottcher MA, Traulsen A, Greig D. 2017. Ribosome reinitiation can explain length-dependent translation of messenger RNA. PLoS Comput Biol13: e1005592. [PMC free article] [PubMed] [Google Scholar]

Rowlands AG, Panniers R, Henshaw EC. 1988. The catalytic mechanism of guanine nucleotide exchange factor action and competitive inhibition by phosphorylated eukaryotic initiation factor 2. J Biol Chem263: 5526–5533. [PubMed] [Google Scholar]

Rozen F, Edery I, Meerovitch K, Dever TE, Merrick WC, Sonenberg N. 1990. Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol Cell Biol10: 1134–1144. [PMC free article] [PubMed] [Google Scholar]

Saini AK, Nanda JS, Martin-Marcos P, Dong J, Zhang F, Bhardwaj M, Lorsch JR, Hinnebusch AG. 2014. Eukaryotic translation initiation factor eIF5 promotes the accuracy of start codon recognition by regulating Pi release and conformational transitions of the preinitiation complex. Nucleic Acids Res42: 9623–9640. [PMC free article] [PubMed] [Google Scholar]

Schmitt E, Naveau M, Mechulam Y. 2010. Eukaryotic and archaeal translation initiation factor 2: A heterotrimeric tRNA carrier. FEBS Lett584: 405–412. [PubMed] [Google Scholar]

Schmitt E, Panvert M, Lazennec-Schurdevin C, Coureux PD, Perez J, Thompson A, Mechulam Y. 2012. Structure of the ternary initiation complex aIF2-GDPNP-methionylated initiator tRNA. Nat Struct Mol Biol19: 450–454. [PubMed] [Google Scholar]

Schreier MH, Erni B, Staehelin T. 1977. Initiation of mammalian protein synthesis. I. Purification and characterization of seven initiation factors. J Mol Biol116: 727–753. [PubMed] [Google Scholar]

Schwab SR, Shugart JA, Horng T, Malarkannan S, Shastri N. 2004. Unanticipated antigens: Translation initiation at CUG with leucine. PLoS Biol2: e366. [PMC free article] [PubMed] [Google Scholar]

Sen ND, Zhou F, Ingolia NT, Hinnebusch AG. 2015. Genome-wide analysis of translational efficiency reveals distinct but overlapping functions of yeast DEAD-box RNA helicases Ded1 and eIF4A. Genome Res25: 1196–1205. [PMC free article] [PubMed] [Google Scholar]

Sen ND, Zhou F, Harris MS, Ingolia NT, Hinnebusch AG. 2016. eIF4B stimulates translation of long mRNAs with structured 5′UTRs and low closed-loop potential but weak dependence on eIF4G. Proc Natl Acad Sci113: 10464–10472. [PMC free article] [PubMed] [Google Scholar]

Sendoel A, Dunn JG, Rodriguez EH, Naik S, Gomez NC, Hurwitz B, Levorse J, Dill BD, Schramek D, Molina H, et al. 2017. Translation from unconventional 5′ start sites drives tumour initiation. Nature541: 494–499. [PMC free article] [PubMed] [Google Scholar]

Shin BS, Kim JR, Walker SE, Dong J, Lorsch JR, Dever TE. 2011. Initiation factor eIF2γ promotes eIF2-GTP-Met-tRNAi(Met) ternary complex binding to the 40S ribosome. Nat Struct Mol Biol18: 1227–1234. [PMC free article] [PubMed] [Google Scholar]

Simonetti A, Brito Querido J, Myasnikov AG, Mancera-Martinez E, Renaud A, Kuhn L, Hashem Y. 2016. eIF3 peripheral subunits rearrangement after mRNA binding and start-codon recognition. Mol Cell63: 206–217. [PubMed] [Google Scholar]

Singh CR, Lee B, Udagawa T, Mohammad-Qureshi SS, Yamamoto Y, Pavitt GD, Asano K. 2006. An eIF5/eIF2 complex antagonizes guanine nucleotide exchange by eIF2B during translation initiation. EMBO J25: 4537–4546. [PMC free article] [PubMed] [Google Scholar]

Singh CR, Watanabe R, Chowdhury W, Hiraishi H, Murai MJ, Yamamoto Y, Miles D, Ikeda Y, Asano M, Asano K. 2012. Sequential eukaryotic translation initiation factor 5 (eIF5) binding to the charged disordered segments of eIF4G and eIF2β stabilizes the 48S preinitiation complex and promotes its shift to the initiation mode. Mol Cell Biol32: 3978–3989. [PMC free article] [PubMed] [Google Scholar]

Sinvani H, Haimov O, Svitkin Y, Sonenberg N, Tamarkin-Ben-Harush A, Viollet B, Dikstein R. 2015. Translational tolerance of mitochondrial genes to metabolic energy stress involves TISU and eIF1-eIF4GI cooperation in start codon selection. Cell Metab21: 479–492. [PubMed] [Google Scholar]

Skabkin MA, Skabkina OV, Dhote V, Komar AA, Hellen CU, Pestova TV. 2010. Activities of Ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling. Genes Dev24: 1787–1801. [PMC free article] [PubMed] [Google Scholar]

Slusher LB, Gillman EC, Martin NC, Hopper AK. 1991. mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5. Proc Natl Acad Sci88: 9789–9793. [PMC free article] [PubMed] [Google Scholar]

Sokabe M, Fraser CS. 2014. Human eukaryotic initiation factor 2 (eIF2)-GTP-Met-tRNAi ternary complex and eIF3 stabilize the 43S preinitiation complex. J Biol Chem289: 31827–31836. [PMC free article] [PubMed] [Google Scholar]

Sokabe M. Fraser CS. 2017. A helicase-independent activity of eIF4A in promoting mRNA recruitment to the human ribosome. Proc Natl Acad Sci114: 6304–6309. [PMC free article] [PubMed] [Google Scholar]

* Sokabe M, Fraser CS. 2018. Toward a kinetic understanding of eukaryotic translation. Cold Spring Harb Perspect Biol 10.1101/cshperspect.a032706. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Sokabe M, Fraser CS, Hershey JW. 2012. The human translation initiation multi-factor complex promotes methionyl-tRNAi binding to the 40S ribosomal subunit. Nucleic Acids Res40: 905–913. [PMC free article] [PubMed] [Google Scholar]

Spevak CC, Ivanov IP, Sachs MS. 2010. Sequence requirements for ribosome stalling by the arginine attenuator peptide. J Biol Chem285: 40933–40942. [PMC free article] [PubMed] [Google Scholar]

Starck SR, Shastri N. 2016. Nowhere to hide: Unconventional translation yields cryptic peptides for immune surveillance. Immunol Rev272: 8–16. [PMC free article] [PubMed] [Google Scholar]

Starck SR, Jiang V, Pavon-Eternod M, Prasad S, McCarthy B, Pan T, Shastri N. 2012. Leucine-tRNA initiates at CUG start codons for protein synthesis and presentation by MHC class I. Science336: 1719–1723. [PubMed] [Google Scholar]

Starck SR, Tsai JC, Chen K, Shodiya M, Wang L, Yahiro K, Martins-Green M, Shastri N, Walter P. 2016. Translation from the 5′ untranslated region shapes the integrated stress response. Science351: aad3867. [PMC free article] [PubMed] [Google Scholar]

* Stern-Ginossar N, Thompson SR, Mathews MB, Mohr I. 2018. Translational control in virus-infected cells. Cold Spring Harb Perspect Biol 10.1101/cshperspect.a033001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Svitkin YV, Pause A, Haghighat A, Pyronnet S, Witherell G, Belsham GJ, Sonenberg N. 2001. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA7: 382–394. [PMC free article] [PubMed] [Google Scholar]

Szamecz B, Rutkai E, Cuchalova L, Munzarova V, Herrmannova A, Nielsen KH, Burela L, Hinnebusch AG, Valasek L. 2008. eIF3a cooperates with sequences 5′ of uORF1 to promote resumption of scanning by post-termination ribosomes for reinitiation on GCN4 mRNA. Genes Dev22: 2414–2425. [PMC free article] [PubMed] [Google Scholar]

Unbehaun A, Borukhov SI, Hellen CU, Pestova TV. 2004. Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP. Genes Dev18: 3078–3093. [PMC free article] [PubMed] [Google Scholar]

Valasek LS. 2012. “Ribozoomin”—Translation initiation from the perspective of the ribosome-bound eukaryotic initiation factors (eIFs). Curr Protein Pept Sci13: 305–330. [PMC free article] [PubMed] [Google Scholar]

Valasek L, Nielsen KH, Hinnebusch AG. 2002. Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO J21: 5886–5898. [PMC free article] [PubMed] [Google Scholar]

Valasek L, Mathew AA, Shin BS, Nielsen KH, Szamecz B, Hinnebusch AG. 2003. The yeast eIF3 subunits TIF32/a, NIP1/c, and eIF5 make critical connections with the 40S ribosome in vivo. Genes Dev17: 786–799. [PMC free article] [PubMed] [Google Scholar]

Valasek L, Nielsen KH, Zhang F, Fekete CA, Hinnebusch AG. 2004. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Mol Cell Biol24: 9437–9455. [PMC free article] [PubMed] [Google Scholar]

Valasek LS, Zeman J, Wagner S, Beznoskova P, Pavlikova Z, Mohammad MP, Hronova V, Herrmannova A, Hashem Y, Gunisova S. 2017. Embraced by eIF3: Structural and functional insights into the roles of eIF3 across the translation cycle. Nucleic Acids Res45: 10948–10968. [PMC free article] [PubMed] [Google Scholar]

Ventoso I, Sanz MA, Molina S, Berlanga JJ, Carrasco L, Esteban M. 2006. Translational resistance of late αvirus mRNA to eIF2α phosphorylation: A strategy to overcome the antiviral effect of protein kinase PKR. Genes Dev20: 87–100. [PMC free article] [PubMed] [Google Scholar]

Villa N, Do A, Hershey JW, Fraser CS. 2013. Human eukaryotic initiation factor 4G (eIF4G) protein binds to eIF3c, -d, and -e to promote mRNA recruitment to the ribosome. J Biol Chem288: 32932–32940. [PMC free article] [PubMed] [Google Scholar]

Visweswaraiah J, Pittman Y, Dever TE, Hinnebusch AG. 2015. The β-hairpin of 40S exit channel protein Rps5/uS7 promotes efficient and accurate translation initiation in vivo. eLife4: e07939. [PMC free article] [PubMed] [Google Scholar]

von der Haar T, McCarthy JE. 2002. Intracellular translation initiation factor levels in Saccharomyces cerevisiae and their role in cap-complex function. Mol Microbiol46: 531–544. [PubMed] [Google Scholar]

Wagner S, Herrmannova A, Sikrova D, Valasek LS. 2016. Human eIF3b and eIF3a serve as the nucleation core for the assembly of eIF3 into two interconnected modules: The yeast-like core and the octamer. Nucleic Acids Res44: 10772–10788. [PMC free article] [PubMed] [Google Scholar]

Weisser M, Voigts-Hoffmann F, Rabl J, Leibundgut M, Ban N. 2013. The crystal structure of the eukaryotic 40S ribosomal subunit in complex with eIF1 and eIF1A. Nat Struct Mol Biol20: 1015–1017. [PubMed] [Google Scholar]

Weisser M, Schafer T, Leibundgut M, Bohringer D, Aylett CHS, Ban N. 2017. Structural and functional insights into human re-initiation complexes. Mol Cell67: 447–456.e447. [PubMed] [Google Scholar]

* Wek RC. 2018. Role of eIF2α kinases in translational control and adaptation to cellular stresses. Cold Spring Harb Perspect Biol 10.1101/cshperspect.a032870. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Wells SE, Hillner PE, Vale RD, Sachs AB. 1998. Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell2: 135–140. [PubMed] [Google Scholar]

Wortham NC, Martinez M, Gordiyenko Y, Robinson CV, Proud CG. 2014. Analysis of the subunit organization of the eIF2B complex reveals new insights into its structure and regulation. FASEB J28: 2225–2237. [PubMed] [Google Scholar]

Yamamoto Y, Singh CR, Marintchev A, Hall NS, Hannig EM, Wagner G, Asano K. 2005. The eukaryotic initiation factor (eIF) 5 HEAT domain mediates multifactor assembly and scanning with distinct interfaces to eIF1, eIF2, eIF3, and eIF4G. Proc Natl Acad Sci102: 16164–16169. [PMC free article] [PubMed] [Google Scholar]

Yamamoto H, Unbehaun A, Loerke J, Behrmann E, Collier M, Burger J, Mielke T, Spahn CM. 2014. Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA. Nat Struct Mol Biol21: 721–727. [PubMed] [Google Scholar]

Yanagiya A, Svitkin YV, Shibata S, Mikami S, Imataka H, Sonenberg N. 2009. Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap. Mol Cell Biol29: 1661–1669. [PMC free article] [PubMed] [Google Scholar]

Young SK, Wek RC. 2016. Upstream open reading frames differentially regulate gene-specific translation in the integrated stress response. J Biol Chem291: 16927–16935. [PMC free article] [PubMed] [Google Scholar]

Zheng A, Yu J, Yamamoto R, Ose T, Tanaka I, Yao M. 2014. X-ray structures of eIF5B and the eIF5B-eIF1A complex: The conformational flexibility of eIF5B is restricted on the ribosome by interaction with eIF1A. Acta Crystallogr D Biol Crystallogr70: 3090–3098. [PubMed] [Google Scholar]

Zu T, Liu Y, Banez-Coronel M, Reid T, Pletnikova O, Lewis J, Miller TM, Harms MB, Falchook AE, Subramony SH, et al. 2013. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci110: E4968–E4977. [PMC free article] [PubMed] [Google Scholar]

* Zu T, Pattamatta A, Ranum LPW. 2018. RNA translation in neurological diseases. Cold Spring Harb Perspect Biol 10.1101/cshperspect.a033019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Protein Synthesis Initiation in Eukaryotic Cells (2024)
Top Articles
How To Teach Yourself Financial Discipline In 3 Steps
5 Smart ways to Save Money Shopping Online | Happy Humble Home
$4,500,000 - 645 Matanzas CT, Fort Myers Beach, FL, 33931, William Raveis Real Estate, Mortgage, and Insurance
Evil Dead Movies In Order & Timeline
Public Opinion Obituaries Chambersburg Pa
Overton Funeral Home Waterloo Iowa
Myhr North Memorial
Arrests reported by Yuba County Sheriff
Embassy Suites Wisconsin Dells
Mlifeinsider Okta
3656 Curlew St
Zendaya Boob Job
123Moviescloud
Gwdonate Org
RBT Exam: What to Expect
Crossword Nexus Solver
Daily Voice Tarrytown
Brett Cooper Wikifeet
Pay Boot Barn Credit Card
Jbf Wichita Falls
Bing Chilling Words Romanized
Pasco Telestaff
John Chiv Words Worth
Mybiglots Net Associates
Red8 Data Entry Job
What Is The Lineup For Nascar Race Today
Bn9 Weather Radar
Kabob-House-Spokane Photos
Leben in Japan – das muss man wissen - Lernen Sie Sprachen online bei italki
2021 Tesla Model 3 Standard Range Pl electric for sale - Portland, OR - craigslist
Spirited Showtimes Near Marcus Twin Creek Cinema
Babydepot Registry
Hannah Jewell
Kelley Fliehler Wikipedia
Ancestors The Humankind Odyssey Wikia
L'alternativa - co*cktail Bar On The Pier
Frommer's Belgium, Holland and Luxembourg (Frommer's Complete Guides) - PDF Free Download
Wbli Playlist
Grapes And Hops Festival Jamestown Ny
KM to M (Kilometer to Meter) Converter, 1 km is 1000 m
Mcgiftcardmall.con
Sept Month Weather
Aita For Announcing My Pregnancy At My Sil Wedding
Electric Toothbrush Feature Crossword
Coroner Photos Timothy Treadwell
Jaefeetz
Dagelijkse hooikoortsradar: deze pollen zitten nu in de lucht
Egg Inc Wiki
ESPN's New Standalone Streaming Service Will Be Available Through Disney+ In 2025
Download Twitter Video (X), Photo, GIF - Twitter Downloader
Booked On The Bayou Houma 2023
Latest Posts
Article information

Author: Neely Ledner

Last Updated:

Views: 5773

Rating: 4.1 / 5 (42 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Neely Ledner

Birthday: 1998-06-09

Address: 443 Barrows Terrace, New Jodyberg, CO 57462-5329

Phone: +2433516856029

Job: Central Legal Facilitator

Hobby: Backpacking, Jogging, Magic, Driving, Macrame, Embroidery, Foraging

Introduction: My name is Neely Ledner, I am a bright, determined, beautiful, adventurous, adventurous, spotless, calm person who loves writing and wants to share my knowledge and understanding with you.