Prevalence of Cryptosporidium infection and associated risk factors in calves in Egypt (2024)

Abstract

Cryptosporidium is one of the causative parasitic agents that causes gastrointestinal diseases in calves. The parasite poses a zoonotic risk to immunocompromised individuals and children. Thus, this study aimed to determine the prevalence of Cryptosporidium infection in calves in three Egyptian governorates situated in Nile Delta and assess the associated risk factors. The Cryptosporidium oocysts were detected in 81 out of 430 calves (18.84%). In addition, the univariant analysis showed that age, feeding source, hygienic status, presence of diarrhea and contact with other animals were significantly (P < 0.05) associated with Cryptosporidium prevalence in calves. Furthermore, the risk factors related with Cryptosporidium prevalence were age (OR 1.96, 95%CI 0.97–3.94), feeding on milk and pasture (OR 2.07, 95%CI 1.15–3.72), poor hygienic condition (OR 2.25, 95%CI 1.28–3.94), presence of diarrhea (OR 2.47, 95%CI 1.23–4.96) and contact with other domestic animals (OR 2.08, 95%CI 1.24–3.50). In addition, the PCR assay targeting 18srRNAshowed that the most prevalent species among calves was C. parvum. Although additional researches are required to understand the most effective steps that farmers and veterinary professionals should take to decrease the occurrence of Cryptosporidium infection.

Similar content being viewed by others

Introduction

Cryptosporidium is an intracellular protozoan and one of the most common enteric pathogens in claves during first two weeks of life. Four species are usually discovered infecting cattle: C. parvum, C. andersoni, C. bovis, and C. ryanae1,2. C. parvum is commonly associated with diarrhoea in susceptible hosts, causing sickness and even mortality, notably in neonatal calves3. The life cycle of this pathogen is direct, and it can grow and replicate in infected animal's gastrointestinal epithelial cells4,5. The infective stage of Cryptospordium's life cycle is the oocyst, which is secreted in the faces and contains four sporozoites. When the oocyst is ingested, sporozoites are released. These sporozoites enter the cells, forming oocysts with thick and thin walls. The thick-walled oocyst is discharged in the faces. The thin-walled oocysts can rupture, allowing the sporozoites to infect new host enterocytes and produce autoinfection, leading to relapses or persistent gut illness. These sporozoites go through several phases before creating new oocysts. Cell infection results in cell death, which causes intestinal villi to shrink and fuse6.

In addition, the parasite can be passed from person to person, animal to animal, or animal to human (zoonotic transmission)7.

Infections are usually transmitted through the faecal-oral route, with infective stages of expelled sporulated oocysts through direct or collateral contact8. The infection is known to be self-limiting in the immunocompetent hosts, but it can cause acute or severe diarrhea in young animals or in immunocompromised hosts9.

Even though bovine cryptosporidiosis has been identified as a significant contributor to newborn diarrhea and financial losses on dairy farms, it is frequently misdiagnosed10. It is characterized by anorexia, abdominal pain and diarrhea, which can cause slow growth and even death. Diarrhea usually begins 3–5days after infection and lasts 4 to 17days in most of infected calves11. Oocyst shedding begins four days after birth and peaks at seven to eighteen days before declining after three weeks12. During diarrhea episodes, oocyst shedding is typically increased13.

Clinically, the age, immunological, and nutritional state of animals can be used to predict how severe cryptosporidiosis will be14. Based on data of previous reports, the Cryptosporidium prevalence in cattle varies over the world and ranges from 6.25 to 39.65%15,16. Cryptosporidiosis prevalence is affected by a variety of factors, including age, hygiene, bedding type, colostrum feeding, herd management, food and water sources, diarrhea, and climate17.

Although insensitive, time-consuming, and requiring skilled personnel to detect the organism, the outdated direct microscopic diagnosis of Cryptosporidium from faecal samples using acid-fast stain is still as gold standard in many laboratories around the world18,19,20,21. Only a few studies on animals have employed microscopic methods22,23,24, however some have also used molecular methods23,25,26,27,28,29. However, there are few epidemiological data and no risk factor analyses for calve cryptosporidiosis in Egypt. The prevalence of Cryptosporidium among ruminant in Ismalia governorates was 32.7% based on PCR assay30, 14.19% among buffaloes calves raising in Dakhalia and Kafr Elsheikh governorates using microscopic examination24.

The purpose of this study was to estimate the prevalence and assess the associated risk factors for Cryptosporidium infection in newborn calve in three governorates situated at Nile Delta of Egypt.

Materials and methods

Ethical statement

The ethical committee for animal research at Benha University approved the entire study's methodology and procedures. Informed consent was obtained from owners of examined claves. The Faculty of Veterinary Medicine's ethical committee ensured that all procedures were carried out in accordance with the relevant laws and guidelines. The ARRIVE criteria were followed during research procedure.

Study area

The study was performed in three governorates situated at Nile Delta of Egypt. The governorates selected for the study are Kafer ElSheikh, Qalyubia, and Gharbia, which are located in latitudes of 31° 06′ 42′′ N, 30.41° N, and 30.867° N, respectively, and longitudes of 30° 56′ 45′′ E, 31.21° E, and 31.028° E, Fig.1.

Prevalence of Cryptosporidium infection and associated risk factors in calves in Egypt (4)

Prevalence of Cryptosporidium in calves in different studied areas (MAP generated by QGIS software, https://qgis.org/).

The Delta is the driest region in the country, has relatively mild temperatures, which increase to 38°C in summer season. On average, the delta receives 100–200mm of rain each year, with the majority of this falling during the winter months. These research areas focus mostly on agriculture, livestock husbandry, and have a high number of farms and pastures.

Sample size and sampling

A cross sectional study was conducted during October 2020 to September 2021 using simple random sampling approach to achieve the forementioned goals. Based on Thrusfield's formula31, the sample size was calculated using an expected prevalence of 19.2%30 at a 95% confidence interval and a 5% precision value. Consequently, 238 cow calves were included in the sample. However, 430 cow calves in total were enlisted to gather the necessary faeces samples. Using sterile plastic gloves, each calf's individual faeces was collected directly from the rectum and preserved at 4°C before being transported to the laboratory.

Questionnaire

At the time of sampling, the farmer completed the provided questionnaire, which mostly asked about animal-related information including breed, age, sex, and body condition. Data on management, including feed source (pasture and milk or pasture), hygienic status (good or poor), the presence of diarrhea (yes or no), and contact with other domestic animals (yes or no), were also gathered.

Sample analysis

The samples were transferred to the laboratory for further processing on the same day they were collected. After that, the samples were treated via faecal flotation in a Sheather's sugar solution24. Then, fecal smear was prepared and stained by modified Ziehl–Neelsen stain32. According to Anderson33, the severity of the infection was determined by counting the cryptosporidial oocysts in a field at a 1000× magnification; the levels were mild (1–5 oocysts/field), moderate (6–20 oocysts/field), and severe (more than 20 oocysts/field), Fig.2.

Prevalence of Cryptosporidium infection and associated risk factors in calves in Egypt (5)

Microscopy of Cryptosporidium oocysts in diarrheal calves' faeces stained with Ziehl–Neelsen stain (×1000).

Molecular identification of cryptosporidiosis

The QIAamp DNA stool Mini Kit (QIAGEN, Hilden, Germany) was used to extract direct DNA from 220mg of faeces samples according to the manufacturer's instructions. The Cryptosporidium small subunit (18S) rRNA gene was amplified with the oligonucleotide primers CRP-DIAG1 forward (5-TTCTAGAGCTAATACATGCG-30) and CRP-DIAG1 reverse (50-CATTTCCTTCGAAACAGGA-30). The PCR assay was performed in total volume of 25µl including 1µl of each primer of (20pmol), 12.5µl of PCR Master Mix (EmeraldAmp Max, Takara, Japan), 5.5µl of water, and 5µl of DNA template. The PCR Conditions was performed as described by Paul et al.34.

For the secondary/nested PCR, 1µl of the primary PCR products was utilized as a template and amplified using the primers CRP-DIAG2 forward (50-GGAAGGGTTATTTATTAGATAAAG-30) and CRP-DIAG2 reverse (50-AAGGAGTAAGGAACAACCTCCA-30). The reaction mixture was initially denaturated at 94°C for 5min, followed by 35 cycles of denaturation at 94°C for one min, annealing at 57°C for 1min, elongation at 72°C for 1min, and final elongation at 72°C for 10min as described by Paul et al.34. The amplified products were identified using 1.5% agarose gel electrophoresis and ethidium bromide staining.

Data analysis

The statistical SPSS software programme, Version 24.0 (IBM, USA), was used for all data analyses. To ascertain the relationship between predicted risk variables and the occurrence of Cryptosporidium infection, the univariate logistic regression approach was applied. When the P value is less than 0.05, the findings are considered statistically significant. A multivariable analysis comprised factors that were significantly (P < 0.05) related to the outcome variable in the univariable analysis20,35,36,37,38,39,40. A test for multicollinearity was also conducted to determine confounding factors and assess the fit of the multivariate model.

Results

Cryptosporidium oocysts were detected in 81 (18.84%) of the 430 examinedcalves and the highest prevalence rate (24.67%) was observed in Kafr ElSheikh governorate, but the lowest rate (14.29%) found in Qalyubia governorate, Fig.1. PCR analysis of all positive samples with microscopic examination revealed predicted bands for Cryptosporidium spp. at 1,325 (Fig.3) in primary PCR which confirm presence of C. parvum in all samples in secondary PCR at 835bp (Fig.4).

Prevalence of Cryptosporidium infection and associated risk factors in calves in Egypt (6)

Identification of Cryptosporidium spp. using PCR assay targeting 18S rRNA. Lane M: ladder (100bp) and lane 1–10 positive samples with detected band at 1325bp.

Prevalence of Cryptosporidium infection and associated risk factors in calves in Egypt (7)

Identification of Cryptosporidium parvum using PCR assay targeting 18S rRNA. Lane M: ladder (100bp) and lane 1–10 positive samples for C. parvum with detected band at 835bp.

By using univariate logistic regression analysis, five variables had a substantial impact on the prevalence of Cryptosporidium infection in calves. The prevalence of the disease was similar between the sex (P = 0.764), between breeds (P = 0.076), across geographic regions (P = 0.064), and in terms of body condition (P = 0.785), Table 1.

The prevalence in calves older than six months was substantially (P = 0.011) greater than in calves younger than six months. In addition, the Cryptosporidium infection increased significantly in calves living in poor hygienic condition (22.69%, 95%CI 18.02–28.16) compared to calves living in good condition status (12.94%, 95%CI 8.7–18.82), and it was significantly higher in calves feeding on pasture and milk (22.5%, 95%CI 18–27.74) than in calves feeding on pastures only (12%, 95%CI 7.73–18.17), Table 1. Additionally, compared to non-diarrheic calves, diarrheic calves had a considerably higher prevalence of Cryptosporidium (21.88%, 95% CI 17.7–27.63, P = 0.006), and calves that had contact with other domestic animals had a significantly higher prevalence (25.26%, 95% CI 19.61–31.89, P = 0.002), Table 1.

Table 2 showed the results of multivariate logistic regression analysis on significant factors (P < 0.05) in univariate analysis, which were age, feed source, sanitary state, presence of diarrhea, and contact with other domestic animals. The prevalence of Cryptosporidium infection increased significantly with age, older calves were two times (OR 1.96, 95%CI 0.97–3.94) more likely to contract the Cryptosporidium infection as compared to young calves. Farms had poor hygiene condition and pasture and milk as source of feeding increased the risk of Cryptosporidium infection by two folds (OR 2.25, 95%CI 1.28–3.94) and (OR 2.07, 95%CI 1.15–3.72), respectively. Animals with diarrhea were 2.47 times (OR 2.47, 95%CI 1.23–4.96) more likely to acquire Cryptosporidium infection than normal calves. Moreover, the risk of Cryptosporidium infection increased two times (OR 2.08, 95%CI 1.24–3.50) more among calves in contact with domestic animals than other.

Discussion

Cryptosporidiosis in animals is considered a zoonotic risk to humans, due to the release of large numbers of resistant oocysts, which contaminate surface water. The Veterinary researchers were interested in cryptosporidiosis because, in addition to its zoonotic significance, it may develop into a dangerous, difficult-to-control disease in many farm animals and cause large economic losses. The present study aimed to evaluate the prevalence of Cryptosporidium infection and assesthe associated risk factors in calves.

In the present study, the total Cryptosporidium prevalence in calves was found to be 18.84% (81/430). This corresponds to the findings of Ayele et al.41, who reported an infection rate of 18.6% in dairy calves in northwest Ethiopia. In addition, the prevalence rate in this study is consistent with the previously reported rate (19.2%) for bovine calves in Ismailia governorates in Egypt30. Similar prevalence rate (17.9%) was found in dairy calves from France42. This study's prevalence rate for Cryptosporidium infection was lower than the reported rates in eastern Ethiopia 27.8% by Regassa et al.43, USA 35.5% by Santın et al.44, Vietnam 44.3% by Nguyen et al.45 and in UK 27.9% by Brook et al.46 but higher than 7.8% in, 13.6%, and 15.8% which reported by Wegayehu et al.47, Ayana and Alemu48, and Wegayehu et al.49 in Ethiopia, respectively.

Furthermore, the detectable species in examined calves was C. parvum which come in accordance with the findings of Singh et al.50 who reported 79.41% of young dairy calves in Punjab infected by C. parvum. Also, other studies reported the more prevalent Cryptosporidium species in calves in Ethiopia and Egypt is C. parvum with prevalence rate of 18.6% and 32.2%, respectively30,51.

The differences in overall Cryptosporidium prevalence between studies could be attributed to differences in ecology, research design, seasons, management system, age, herd size, and laboratory tests used23,28,46,48,52,53,54,55,56,57,58. The diagnostic procedures used in this survey are less sensitive and can produce misleading negative results. This could potentially be the explanation for report variation59.

ThesexhadnoeffectontheprevalenceofCryptosporidiuminfectioninthecurrentstudy, which come in agreement with previous findings of Paul et al.34. In contrast, other studies reported significant role for sex on prevalence of Cryptosporidium in calves32,60.

The significant effect of age on Cryptosporidium prevalence in calve in this study was consistent with previous findings of Wegayehu et al.49in Ethiopia, they found higher prevalence in calves older than 3months and stated infection was age related and 92.1% were infected with C. andrsoni which infect older age calves. In contrast, Geurden et al.61, Ayele et al.41 and Venu et al.59 stated that infection rate decreased with the increase of age. Similarly, the effect of age on prevalence of Cryptosporidium infection in calve was observed in other studies16,41. This might be due to lower tolerance of young calves as a result of immature immune system. Calves under four months of age are more susceptible to contracting Cryptosporidium infection46. This findings is consistent with the findings of Kváč et al.62, who observed that infection resistance can evolve with age due to immunological development over time.

Additionally, a significant correlation was found between the hygienic condition of the farm and the occurrence of Cryptosporidium infection in calves. The current result is confirmed by the findings of Abebe et al.63, who found a significant association between Cryptosporidium infection and the hygiene status of the farms. In addition, a similar results were reported by El-Khodery and Osman24 and Castro-Hermida et al.64, they confirmed that poor hygiene enhances the infection rate and dissemination of Cryptosporidium species in animals. This could be attributed to the fact that muddy or dirty farm could probably establish a favourable condition for the presence or existence of Cryptosporidium oocysts in the surround environment of animals. This can be increasing the risk of contamination of food and water, hence increase the risk of Cryptosporidium infection in calves41,52,65,66,67,68,69,70.

The present findings are directly in line with previous findings of Ayele et al.41, who observed that the prevalence of Cryptosporidium increased significantly among calves feeding on pasture and milk. This may be due to pasture being contaminated with infectious oocysts, and switching between pasture and milk may produce digestive disturbances that increase the prevalence of cryptosporidiosis.

Cryptosporidiosis causes sever watery diarrhea in calves. The findings of the present study revealed strong association between presence of diarrhea and prevalence of Cryptosporidium in calves. This was explained by the fact that diarrheal animals had a higher rate of oocyst shedding than calves with regular faeces. This is consistent with those has been found in previous studies of El-Khodery and Osman24 and Abebe et al.63. This could be as a result of the infection causing villous atrophy and crypt hyperplasia, which reduces the intestine's surface area available for absorption71. Consequently, interfere with absorption of water, glucose and sodium leading to diarrhea72. Additionally, the parasite may be able to decrease the activity of the enzyme disaccharidase, which would reduce the amount of sugars broken down. This would lead to bacterial growth, the production of volatile fatty acids, and changes in osmotic pressure, which would then cause severe watery diarrhea73.

Different animal species and human are susceptible to Cryptosporidium infection and the infection can be transmitted by direct or indirect routes through fecal–oral route32. Consequently, mixing different animals species could facilitate the transmission of the disease42. Similarly, Mohammed et al.74 observed that keeping animals separately or avoiding close contact with animals of various species can reduce the risk of Cryptosporidium infection.

Conclusion

The prevalence of Cryptosporidium infection was widely spreading among calves in the studied governorates with rate of 18.84%. Based on the present findings, age, feed source, farm hygiene, occurrence of diarrhea, and interaction with various domestic animals were all risk factors for Cryptosporidium infection. It is essential to raise awareness of risk factors, sources of infection, and modes of transmission to control and reduce the disease transmission between animals and human. Further molecular researches in different areas of the country are recommended to determine species allocation and the disease's national impact.

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Wang, R. et al. Characteristics of Cryptosporidium transmission in preweaned dairy cattle in Henan, China. J. Clin. Microbiol. 49, 1077–1082 (2011).

    Article PubMed PubMed Central Google Scholar

  2. Díaz, P. et al. The age-related Cryptosporidium species distribution in asymptomatic cattle from North-Western Spain. Animals 11, 256 (2021).

    Article PubMed PubMed Central Google Scholar

  3. Broglia, A., Reckinger, S., Cacció, S. & Nöckler, K. Distribution of Cryptosporidium parvum subtypes in calves in Germany. Vet. Parasitol. 154, 8–13 (2008).

    Article PubMed CAS Google Scholar

  4. Chen, W., Harp, J. A. & Harmsen, A. G. Cryptosporidium parvum infection in gene-targeted B cell-deficient mice. J. Parasitol. 89, 391–393 (2003).

    Article PubMed Google Scholar

  5. Shafieyan, H., Alborzi, A., Ahmadinejad, H. & Tabandeh, M. Prevalence of Cryptosporidium species in ruminants of Lorestan province, Iran. J. Parasit. Dis. 12, 63–94 (2014).

    Google Scholar

  6. Chalmers, R. M. & Davies, A. P. Minireview: Clinical cryptosporidiosis. Exp. Parasitol. 124, 138–146 (2010).

    Article PubMed Google Scholar

  7. Ryan, U., Fayer, R. & Xiao, L. Cryptosporidium species in humans and animals: current understanding and research needs. Parasitology 141, 1667–1685 (2014).

    Article PubMed Google Scholar

  8. Dumaine, J. E., Tandel, J. & Striepen, B. Cryptosporidium parvum. Trends Parasitol. 36, 485–486 (2020).

    Article PubMed CAS Google Scholar

  9. Snelling, W. J. et al. Cryptosporidiosis in developing countries. J. Infect. Dev. Ctries. 1, 242–256 (2007).

    Article PubMed Google Scholar

  10. Goma, F. et al. The prevalence and molecular characterisation of Cryptosporidium spp. in small ruminants in Zambia. Small Rumin. Res. 72, 77–80 (2007).

    Article Google Scholar

  11. de Graaf, D. C., Vanopdenbosch, E., Ortega-Mora, L. M., Abbassi, H. & Peeters, J. E. A review of the importance of cryptosporidiosis in farm animals. Int. J. Parasitol. 29, 1269–1287 (1999).

    Article PubMed Google Scholar

  12. Trotz-Williams, L. A. et al. Calf-level risk factors for neonatal diarrhea and shedding of Cryptosporidium parvum in Ontario dairy calves. Prev. Vet. Med. 82, 12–28 (2007).

    Article PubMed PubMed Central Google Scholar

  13. McCluskey, B., Greiner, E. & Donovan, G. Patterns of Cryptosporidium oocyst shedding in calves and a comparison of two diagnostic methods. Vet. Parasitol. 60, 185–190 (1995).

    Article PubMed CAS Google Scholar

  14. Nasir, A., Avais, M., Khan, M. & Ahmad, N. Prevalence of Cryptosporidium parvum infection in Lahore (Pakistan) and its association with diarrhea in dairy calves. Int. J. Agric. Biol. 11, 221–224 (2009).

    Google Scholar

  15. Azami, M. Prevalence of Cryptosporidium infection in cattle in Isfahan, Iran. J. Eukaryot. Microbiol. 54, 100–102 (2007).

    Article PubMed ADS Google Scholar

  16. Joute, J., Gill, J. & Singh, B. Prevalence and molecular epidemiology of Cryptosporidium parvum in dairy calves in Punjab (India). J. Parasit. Dis. 40, 745–749 (2016).

    Article PubMed CAS Google Scholar

  17. Ogendo, A. et al. Cryptosporidium infection in calves and the environment in Asembo, Western Kenya: 2015. Pan Afr. Med. J. 28, 9 (2017).

  18. Morgan, F. U. et al. Comparison of PCR and microscopy for detection of Cryptosporidium parvum in human fecal specimens: clinical trial. J. Clin. Microbiol. 36, 995–998 (1998).

    Article PubMed PubMed Central CAS Google Scholar

  19. Webster, K., Smith, H., Giles, M., Dawson, L. & Robertson, L. Detection of Cryptosporidium parvum oocysts in faeces: Comparison of conventional coproscopical methods and the polymerase chain reaction. Vet. Parasitol. 61, 5–13 (1996).

    Article PubMed CAS Google Scholar

  20. Selim, A. & Abdelhady, A. Neosporosis among Egyptian camels and its associated risk factors. Trop. Anim. Health Prod. 52, 3381–3385 (2020).

    Article PubMed Google Scholar

  21. Selim, A., Ali, A.-F. & Ramadan, E. Prevalence and molecular epidemiology of Johne’s disease in Egyptian cattle. Acta Tropica 195, 1–5 (2019).

    Article PubMed CAS Google Scholar

  22. Salem, G. & el-Assaly, T. The role of wild rats as a reservoir of some internal parasites in Qalyobia governorate. J. Egypt. Soc. Parasitol. 29, 495–503 (1999).

    PubMed Google Scholar

  23. Amer, S. et al. Cryptosporidium genotypes and subtypes in dairy calves in Egypt. Vet. Parasitol. 169, 382–386 (2010).

    Article PubMed CAS Google Scholar

  24. El-Khodery, S. A. & Osman, S. A. Cryptosporidiosis in buffalo calves (Bubalus bubalis): prevalence and potential risk factors. Trop. Anim. Health Prod. 40, 419–426 (2008).

    Article PubMed Google Scholar

  25. Elhaig, M. M., Selim, A., Mandour, A. S., Schulz, C. & Hoffmann, B. Prevalence and molecular characterization of peste des petit* ruminants virus from Ismailia and Suez, Northeastern Egypt, 2014–2016. Small Rumin. Res. 169, 94–98 (2018).

    Article Google Scholar

  26. Reisberg, K., Selim, A. M. & Gaede, W. Simultaneous detection of Chlamydia spp., Coxiella burnetii, and Neospora caninum in abortion material of ruminants by multiplex real-time polymerase chain reaction. J. Vet. Diagn. Investig. 25, 614–619 (2013).

    Article Google Scholar

  27. Selim, A., Abdelhady, A. & Alahadeb, J. Prevalence and first molecular characterization of Ehrlichia canis in Egyptian dogs. Pak. Vet. J 41, 117–121 (2020).

    Article Google Scholar

  28. Selim, A., Yang, E., Rousset, E., Thiéry, R. & Sidi-Boumedine, K. Characterization of Coxiella burnetii strains from ruminants in a Galleria mellonella host-based model. New Microbes New Infect. 24, 8–13. https://doi.org/10.1016/j.nmni.2018.02.008 (2018).

    Article PubMed PubMed Central CAS Google Scholar

  29. Selim, A., Elhaig, M. M., Taha, S. A. & Nasr, E. A. Antibacterial activity of silver nanoparticles against field and reference strains of Mycobacterium tuberculosis, Mycobacterium bovis and multiple-drug-resistant tuberculosis strains. Revue scientifique et technique (International Office of Epizootics) 37, 823–830. https://doi.org/10.20506/rst.37.3.2888 (2018).

    Article PubMed CAS Google Scholar

  30. Helmy, Y. A., Krücken, J., Nöckler, K., von Samson-Himmelstjerna, G. & Zessin, K.-H. Molecular epidemiology of Cryptosporidium in livestock animals and humans in the Ismailia province of Egypt. Vet. Parasitol. 193, 15–24 (2013).

    Article PubMed Google Scholar

  31. Thrusfield, M. Veterinary epidemiology (Wiley, 2018).

    Book Google Scholar

  32. Maurya, P. S. et al. Prevalence and risk factors associated with Cryptosporidium spp. infection in young domestic livestock in India. Trop. Anim. Health Prod. 45, 941–946 (2013).

    Article PubMed Google Scholar

  33. Anderson, B. Enteritis caused by Cryptosporidium in calves. Vet. Med. Small Anim. Clin. 76, 865–868 (1981).

    PubMed CAS Google Scholar

  34. Paul, S. et al. Prevalence and molecular characterization of bovine Cryptosporidium isolates in India. Vet. Parasitol. 153, 143–146 (2008).

    Article PubMed CAS Google Scholar

  35. Selim, A. & Abdelhady, A. The first detection of anti-West Nile virus antibody in domestic ruminants in Egypt. Trop. Anim. Health Prod. 52, 3147–3151 (2020).

    Article PubMed Google Scholar

  36. Selim, A. et al. Prevalence and animal level risk factors associated with Trypanosoma evansi infection in dromedary camels. Sci. Rep. 12, 8933 (2022).

    Article PubMed PubMed Central ADS CAS Google Scholar

  37. Selim, A. M., Elhaig, M. M., Moawed, S. A. & El-Nahas, E. Modeling the potential risk factors of bovine viral diarrhea prevalence in Egypt using univariable and multivariable logistic regression analyses. Vet. World 11, 259 (2018).

    Article PubMed PubMed Central Google Scholar

  38. Selim, A., Attia, K. A., Alsubki, R. A., Kimiko, I. & Sayed-Ahmed, M. Z. Cross-sectional survey on Mycobacterium avium subsp. paratuberculosis in Dromedary Camels: Seroprevalence and risk factors. Acta Trop. 226, 10626. https://doi.org/10.1016/j.actatropica.2021.106261 (2022).

    Article CAS Google Scholar

  39. Selim, A., Khater, H. & Almohammed, H. I. A recent update about seroprevalence of ovine neosporosis in Northern Egypt and its associated risk factors. Sci. Rep. 11, 14043. https://doi.org/10.1038/s41598-021-93596-9 (2021).

    Article PubMed PubMed Central ADS CAS Google Scholar

  40. Selim, A., Megahed, A., Kandeel, S., Alouffi, A. & Almutairi, M. M. West Nile virus seroprevalence and associated risk factors among horses in Egypt. Sci. Rep. 11, 20932. https://doi.org/10.1038/s41598-021-00449-6 (2021).

    Article PubMed PubMed Central ADS CAS Google Scholar

  41. Ayele, A., Seyoum, Z. & Leta, S. Cryptosporidium infection in bovine calves: Prevalence and potential risk factors in northwest Ethiopia. BMC Res. Notes 11, 1–6 (2018).

    Article Google Scholar

  42. Lefay, D., Naciri, M., Poirier, P. & Chermette, R. Prevalence of Cryptosporidium infection in calves in France. Vet. Parasitol. 89, 1–9 (2000).

    Article PubMed PubMed Central CAS Google Scholar

  43. Regassa, A. et al. Cryptosporidium in calves, lambs and kids at Haramaya, eastern Ethiopia. Ethiop. Vet. J. 17, 81–94 (2013).

    Article Google Scholar

  44. Santın, M. et al. Prevalence and age-related variation of Cryptosporidium species and genotypes in dairy calves. Vet. Parasitol. 122, 103–117 (2004).

    Article PubMed Google Scholar

  45. Nguyen, S. T. et al. Prevalence and first genetic identification of Cryptosporidium spp. in cattle in central Viet Nam. Vet. Parasitol. 150, 357–361 (2007).

    Article PubMed CAS Google Scholar

  46. Brook, E., Hart, C. A., French, N. & Christley, R. Prevalence and risk factors for Cryptosporidium spp. infection in young calves. Vet. Parasitol. 152, 46–52 (2008).

    Article PubMed Google Scholar

  47. Wegayehu, T., Adamu, H. & Petros, B. Prevalence of Giardia duodenalis and Cryptosporidium species infections among children and cattle in North Shewa Zone, Ethiopia. BMC Infect. Dis. 13, 1–7 (2013).

    Article Google Scholar

  48. Ayana, D. & Alemu, B. Cryptosporidiosis in calves, lambs and goat kids in Bishoftu, Oromia regional state, Ethiopia. Afr. J. Basic Appl. Sci. 7, 233–239 (2015).

    Google Scholar

  49. Wegayehu, T. et al. Prevalence and genetic characterization of Cryptosporidium species in dairy calves in Central Ethiopia. PLoS ONE 11, e0154647 (2016).

    Article PubMed PubMed Central Google Scholar

  50. Singh, B. B. et al. Prevalence of Cryptosporidium parvum infection in Punjab (India) and its association with diarrhea in neonatal dairy calves. Vet. Parasitol. 140, 162–165 (2006).

    Article PubMed Google Scholar

  51. Manyazewal, A. et al. Prevalence, risk factors and molecular characterization of Cryptosporidium infection in cattle in Addis Ababa and its environs, Ethiopia. Vet. Parasitol. Region. Stud. Rep. 13, 79–84. https://doi.org/10.1016/j.vprsr.2018.03.005 (2018).

    Article Google Scholar

  52. Selim, A., Manaa, E. & Khater, H. Seroprevalence and risk factors for lumpy skin disease in cattle in Northern Egypt. Trop. Anim. Health Prod. 53, 350 (2021).

    Article PubMed Google Scholar

  53. Selim, A., Manaa, E. & Khater, H. Molecular characterization and phylogenetic analysis of lumpy skin disease in Egypt. Comp. Immunol. Microbiol. Infect. Dis. 79, 101699 (2021).

    Article PubMed CAS Google Scholar

  54. Selim, A., Manaa, E. A., Alanazi, A. D. & Alyousif, M. S. Seroprevalence, risk factors and molecular identification of bovine leukemia virus in Egyptian cattle. Animals 11, 319 (2021).

    Article PubMed PubMed Central Google Scholar

  55. Selim, A., Manaa, E. A., Waheed, R. M. & Alanazi, A. D. Seroprevalence, associated risk factors analysis and first molecular characterization of chlamydia abortus among Egyptian sheep. Comp. Immunol. Microbiol. Infect. Dis. 74, 101600 (2021).

    Article PubMed CAS Google Scholar

  56. Selim, A., Megahed, A. A., Kandeel, S. & Abdelhady, A. Risk factor analysis of bovine leukemia virus infection in dairy cattle in Egypt. Comp. Immunol. Microbiol. Infect. Dis. 72, 101517 (2020).

    Article PubMed Google Scholar

  57. Selim, A., Radwan, A., Arnaout, F. & Khater, H. The recent update of the situation of West Nile Fever among equids in Egypt after three decades of missing information. Pak. Vet. J. 40, 390–393 (2020).

  58. Selim, A. M., Elhaig, M. M. & Gaede, W. Development of multiplex real-time PCR assay for the detection of Brucella spp., Leptospira spp. and Campylobacter foetus. Vet. Ital. 50, 75 (2014).

    Google Scholar

  59. Venu, R. et al. Factors influencing on prevalence of Cryptosporidium infection in south Indian dairy calves. J. Parasit. Dis. 37, 168–172 (2013).

    Article PubMed CAS Google Scholar

  60. Bhat, S., Juyal, P. & Singla, L. Prevalence of cryptosporidiosis in neonatal buffalo calves in Ludhiana district of Punjab, India. Asian J. Anim. Vet. Adv. 7, 512–520 (2012).

    Article CAS Google Scholar

  61. Geurden, T. et al. Prevalence and genotyping of Cryptosporidium in three cattle husbandry systems in Zambia. Vet. Parasitol. 138, 217–222 (2006).

    Article PubMed CAS Google Scholar

  62. Kváč, M., Kouba, M. & Vítovec, J. Age-related and housing-dependence of Cryptosporidium infection of calves from dairy and beef herds in South Bohemia, Czech Republic. Vet. Parasitol. 137, 202–209 (2006).

    Article PubMed Google Scholar

  63. Abebe, R., Wossene, A. & ku*msa, B. An epidemiological study of Cryptosporidium infection in dairy calves on selected dairy farms of central Ethiopia. Revue de Médecine Véterinaire 159, 107 (2008).

    Google Scholar

  64. Castro-Hermida, J. A., González-Losada, Y. A. & Ares-Mazás, E. Prevalence of and risk factors involved in the spread of neonatal bovine cryptosporidiosis in Galicia (NW Spain). Vet. Parasitol. 106, 1–10 (2002).

    Article PubMed PubMed Central Google Scholar

  65. Selim, A., Almohammed, H., Abdelhady, A., Alouffi, A. & Alshammari, F. A. Molecular detection and risk factors for Anaplasma platys infection in dogs from Egypt. Parasites Vectors 14, 429 (2021).

    Article PubMed PubMed Central CAS Google Scholar

  66. Selim, A., Attia, K., Ramadan, E., Hafez, Y. M. & Salman, A. Seroprevalence and molecular characterization of Brucella species in naturally infected cattle and sheep. Prev. Vet. Med. 171, 104756 (2019).

    Article PubMed Google Scholar

  67. Selim, A., Megahed, A., Ben Said, M., Alanazi, A. D. & Sayed-Ahmed, M. Z. Molecular survey and phylogenetic analysis of Babesia vogeli in dogs. Sci. Rep. 12, 6988 (2022).

    Article PubMed PubMed Central ADS CAS Google Scholar

  68. Selim, A., El-Haig, M., Galila, E. S. & Gaede, W. Direct detection of Mycobacterium avium subsp. Paratuberculosis in bovine milk by multiplex Real-time PCR. Anim. Sci. Pap. Rep. 31, 291–302 (2013).

    CAS Google Scholar

  69. Selim, A. & Khater, H. Seroprevalence and risk factors associated with Equine piroplasmosis in North Egypt. Comp. Immunol. Microbiol. Infect. Dis. 73, 101549 (2020).

    Article PubMed Google Scholar

  70. Selim, A., Alanazi, A. D., Sazmand, A. & Otranto, D. Seroprevalence and associated risk factors for vector-borne pathogens in dogs from Egypt. Parasites Vectors 14, 1–11 (2021).

    Article Google Scholar

  71. Foster, D. & Smith, G. W. Pathophysiology of diarrhea in calves. Vet. Clin. N. Am. Food Anim. Pract. 25, 13–36 (2009).

    Article CAS Google Scholar

  72. Radostit*, O. M., Gay, C., Hinchcliff, K. W. & Constable, P. D. Veterinary Medicine E-Book: A textbook of the diseases of cattle, horses, sheep, pigs and goats (Elsevier Health Sciences, 2006).

    Google Scholar

  73. Rickard, L. Veterinary Parasitology. The Practical Veterinarian. Printed in the United States of America (2001).

  74. Mohammed, H., Wade, S. & Schaaf, S. Risk factors associated with Cryptosporidium parvum infection in dairy cattle in southeastern New York State. Vet. Parasitol. 83, 1–13 (1999).

    Article PubMed CAS Google Scholar

Download references

Acknowledgements

The authors would like to acknowledge the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia for the financial support of this research through the Grant Number 3779.

Funding

This work was supported through the Annual Funding track by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant Number 3779).

Author information

Authors and Affiliations

  1. Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia

    Hattan S. Gattan

  2. Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia

    Hattan S. Gattan

  3. Department of Biology, College of Science, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia

    Ayed Alshammari

  4. Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, 31982, Al-Ahsa, Saudi Arabia

    Mohamed Marzok&Mohamed Salem

  5. Department of Surgery, Faculty of Veterinary Medicine, Kafr El Sheikh University, Kafr El Sheikh, Egypt

    Mohamed Marzok

  6. Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Cairo, 12613, Egypt

    Mohamed Salem

  7. Department of Microbiology, College of Veterinary Medicine, King Faisal University, P.O. Box 400, 31982, Al-Ahsa, Saudi Arabia

    Omar A. AL-Jabr

  8. Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt

    Abdelfattah Selim

Authors

  1. Hattan S. Gattan

    You can also search for this author in PubMedGoogle Scholar

  2. Ayed Alshammari

    You can also search for this author in PubMedGoogle Scholar

  3. Mohamed Marzok

    You can also search for this author in PubMedGoogle Scholar

  4. Mohamed Salem

    You can also search for this author in PubMedGoogle Scholar

  5. Omar A. AL-Jabr

    You can also search for this author in PubMedGoogle Scholar

  6. Abdelfattah Selim

    You can also search for this author in PubMedGoogle Scholar

Contributions

Conceptualization, methodology, formal analysis, investigation, resources, data curation, writing-original draft preparation, A.S., O.A.A., H.S.G., M.M., M.S. and A.A.; writing-review and editing, A.S., M.M., O.A.A., H.S.G., M.S. and A.A.; project administration, M.M.; funding acquisition, A.S., M.M., O.A.A., H.S.G., M.S. and A.A. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Mohamed Marzok or Abdelfattah Selim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Prevalence of Cryptosporidium infection and associated risk factors in calves in Egypt (9)

Cite this article

Gattan, H.S., Alshammari, A., Marzok, M. et al. Prevalence of Cryptosporidium infection and associated risk factors in calves in Egypt. Sci Rep 13, 17755 (2023). https://doi.org/10.1038/s41598-023-44434-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-023-44434-7

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Prevalence of Cryptosporidium infection and associated risk factors in calves in Egypt (2024)
Top Articles
‘The set-up will be more like 1929’: Cathie Wood has warned of another ‘Great Depression’ if the Fed doesn't pivot — here are 3 investment sectors for safe haven
2 Beyond-Cheap Canadian Stocks to Buy Next Week
English Bulldog Puppies For Sale Under 1000 In Florida
Katie Pavlich Bikini Photos
Gamevault Agent
Pieology Nutrition Calculator Mobile
Hocus Pocus Showtimes Near Harkins Theatres Yuma Palms 14
Hendersonville (Tennessee) – Travel guide at Wikivoyage
Compare the Samsung Galaxy S24 - 256GB - Cobalt Violet vs Apple iPhone 16 Pro - 128GB - Desert Titanium | AT&T
Vardis Olive Garden (Georgioupolis, Kreta) ✈️ inkl. Flug buchen
Craigslist Dog Kennels For Sale
Things To Do In Atlanta Tomorrow Night
Non Sequitur
Crossword Nexus Solver
How To Cut Eelgrass Grounded
Pac Man Deviantart
Alexander Funeral Home Gallatin Obituaries
Energy Healing Conference Utah
Geometry Review Quiz 5 Answer Key
Hobby Stores Near Me Now
Icivics The Electoral Process Answer Key
Allybearloves
Bible Gateway passage: Revelation 3 - New Living Translation
Yisd Home Access Center
Pearson Correlation Coefficient
Home
Shadbase Get Out Of Jail
Gina Wilson Angle Addition Postulate
Celina Powell Lil Meech Video: A Controversial Encounter Shakes Social Media - Video Reddit Trend
Walmart Pharmacy Near Me Open
Marquette Gas Prices
A Christmas Horse - Alison Senxation
Ou Football Brainiacs
Access a Shared Resource | Computing for Arts + Sciences
Vera Bradley Factory Outlet Sunbury Products
Pixel Combat Unblocked
Movies - EPIC Theatres
Cvs Sport Physicals
Mercedes W204 Belt Diagram
Mia Malkova Bio, Net Worth, Age & More - Magzica
'Conan Exiles' 3.0 Guide: How To Unlock Spells And Sorcery
Teenbeautyfitness
Where Can I Cash A Huntington National Bank Check
Topos De Bolos Engraçados
Sand Castle Parents Guide
Gregory (Five Nights at Freddy's)
Grand Valley State University Library Hours
Hello – Cornerstone Chapel
Stoughton Commuter Rail Schedule
Nfsd Web Portal
Selly Medaline
Latest Posts
Article information

Author: Amb. Frankie Simonis

Last Updated:

Views: 6413

Rating: 4.6 / 5 (76 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Amb. Frankie Simonis

Birthday: 1998-02-19

Address: 64841 Delmar Isle, North Wiley, OR 74073

Phone: +17844167847676

Job: Forward IT Agent

Hobby: LARPing, Kitesurfing, Sewing, Digital arts, Sand art, Gardening, Dance

Introduction: My name is Amb. Frankie Simonis, I am a hilarious, enchanting, energetic, cooperative, innocent, cute, joyous person who loves writing and wants to share my knowledge and understanding with you.