Organosulfur compounds and possible mechanism of garlic in cancer (2024)

As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsem*nt of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer | PMC Copyright Notice

Organosulfur compounds and possible mechanism of garlic in cancer (1)

Guide for AuthorsAbout this journalExplore this journalSaudi Pharmaceutical Journal : SPJ

Saudi Pharm J. 2010 Jan; 18(1): 51–58.

Published online 2009 Dec 24. doi:10.1016/j.jsps.2009.12.007

PMCID: PMC3731019

PMID: 23960721

Author information Article notes Copyright and License information PMC Disclaimer

Abstract

Garlic (Allium sativum), a member of the family Liliaceae, contains an abundance of chemical compounds that have been shown to possess beneficial effects to protect against several diseases, including cancer. Evidence supports the protective effects of garlic in stomach, colorectal, breast cancer in humans. The protective effects appear to be related to the presence of organosulfur compounds, predominantly allyl derivatives, which also have been shown to inhibit carcinogenesis in forestomach, esophagus, colon, mammary gland and lung of experimental animals. The exact mechanisms of the cancer-preventive effects are not clear, although several hypotheses have been proposed. Organosulfur compounds modulate the activity of several metabolizing enzymes that activate (cytochrome P450s) or detoxify (glutathione S-transferases) carcinogens and inhibit the formation of DNA adducts in several target tissues. Antiproliferative activity has been described in several tumor cell lines, which is possibly mediated by induction of apoptosis and alterations of the cell cycle. Organosulfur compounds in garlic are thus possible cancer-preventive agents. Clinical trials will be required to define the effective dose that has no toxicity in humans.

Keywords: Garlic, Antitumor, Antitumorigenic, Antiproliferative, Organosulfur

1. Introduction

The name “Allium sativum” is derived from the Celtic word “all”, meaning burning or stinging, and the Latin “sativum” meaning planted or cultivated (Mahady et al., 2001; Srivastava et al., 1995). The English word, garlic, is derived from the Anglo-Saxon “gar-leac” or spear plant, referring to its flowering stalk.

Garlic has historically been used to treat earaches, leprosy, deafness, severe diarrhea, constipation and parasitic infections, and to lower fever, fight infections and relieve stomach aches. Garlic and its extracts have been used to treat infections for thousands of years (Hahn, 1996) and it has long been revered for its medicinal properties as evidenced by ancient writings from Egypt, Greece, China and India extolling its merits. Garlic is thought to have diaphoretic, expectorant, antispasmodic, antiseptic, bacteriostatic, antiviral, antihelminthic and hypotensive effects; it is commonly used to treat chronic bronchitis, recurrent upper respiratory tract infections and influenza (Newall et al., 1996). It has been used for medicinal purpose for more than 3000years, and has bactericidal (Cavallito and Bailey, 1944), antibiotic (Stoll and Seebeck, 1951), and fungicidal (Moore and Atkins, 1997) properties. Epidemiologic and preclinical studies suggested that garlic may influence the risk of heart disease and cancer (Milner, 1996, 1999; Orekhov and Grunwald, 1997) and also as an anticancer dietary component are reported by Fleischauer and Arab (Fleischauer and Arab, 2001). The most compelling evidence that garlic and related sulfur constituents can suppress cancer risk and alter the biological behaviour of tumors. Experimentally, garlic and its associated sulfur components are reported to suppress tumor incidence in breast, colon, skin, uterine, esophagus and lung cancers (Amagase and Milner, 1993; Hussain et al., 1990; Sumiyoshi and Wargovich, 1990; Wargovich et al., 1988). A recent meta-analysis also showed that a high intake of garlic may be associated with decreased risks for stomach and colorectal cancer (Fleischauer et al., 2000). This review will briefly focus on constituents and evidence of possible mechanism of garlic in cancer.

1.1. Organsulfur constituents in garlic

Blackwood and Fulder (1987) reported that an average clove of garlic weighs between 3 and 6g and contains an average of 1g of carbohydrates (90% of which is in a starchy form called sinistrin), 0.2g of protein, 0.05g of fiber, 0.01g of fat and vitamins A, B1, B2, B3 and C. The Vitamin B1 (thiamin) is combined with the allicin and called allithiamine and is easily absorbed into the intestine. Garlic contains about 10 different kinds of natural sugars which make up about a fourth of its substances; they include fructose, glucose, inulin and arabinose. Garlic can reduce blood sugar levels (Sheela et al., 1995; Augusti and Sheela, 1996). Fulder and Blackwood (Blackwood and Fulder, 1987) further say that garlic is richer than any other food in adenosine, a nucleic acid which is a building block of DNA and RNA. The primary anti-platelet constituent found in garlic appears to be adenosine (Makheja and Bailey, 1990). Garlic contains approximately 33 sulfur compounds (aliin, allicin, ajoene, allylpropyl disulfide, diallyl trisulfide, sallylcysteine, vinyldithiines, S-allylmercaptocystein, and others), several enzymes (allinase, peroxidases, myrosinase, and others), 17 amino acids (arginine and others), and minerals (selenium, germanium, tellurium and other trace minerals) (Newall et al., 1996). Biological effects of garlic are attributed to its characteristic organosulfur compounds (Agarwal, 1996; Block, 1992). Allicin (diallyl thiosulphate) chemically known as 2-propene-1-sulfinothioc acid S-2-propenyl ester; thio-2-propene-1-sulfinic acid S-allyl ester (The Merck Index, 1989) and discovered by Cavallito and Bailey (1944) in 1944, responsible for garlic’s typical pungent smell. Allicin does not exist in garlic until it is crushed or cut; injury to the garlic bulb activates the enzyme allinase (Stoll and Seebeck, 1951), which metabolizes alliin to allicin (Block, 1985) (Fig. 1).

Organosulfur compounds and possible mechanism of garlic in cancer (2)

Pathway for the formation of allicin from alliin.

Allicin is further metabolized to produce diallyl sulphide (DAS), diallyl disulfide (DADS), diallyl trisulfide, allyl methyl trisulfide, dithiins and ajone (Fig. 2) vinyldithiines.

This breakdown occurs within hours at room temperature and within minutes during cooking (Blania and Spangenberg, 1991). Alliin is non protein amino acid based on cysteine and has four stereoisomers but only one isomer is present in garlic. Dried, powdered garlic contains approximately 1% alliin (S-allyl cysteine sulfoxide). According to two studies of garlic preparations, allicin decreased to non-detectable amounts within 1–6days (Yu and Wu, 1989). Allicin can easily diffuse into the internal volume of vesicles or into the cytoplasm of red blood cells. Lipid bilayers do not constitute a barrier for allicin penetration and its diffusion through the lipid bilayer and it does not cause membrane leakage, fusion or aggregation (Miron et al., 2000) findings raise the possibility that in biological systems allicin can penetrate very rapidly into different compartments of the cells and exert its biological effects. Thus, significance of allicin as a biological effectors’ molecule is due not only to its high reactivity with low and high molecular weigh thiols and its prominent antioxidant activity (Rabinkov et al., 1998), but also to its accessibility resulting from high membrane permeability. Due to its high reactivity, allicin was shown to be completely metabolized in the liver (Egen-Schwind et al., 1992). If allicin could even make it to the blood (to be delivered throughout the body), studies have shown that it changes into other compounds within 5min and in the process may oxidize the blood cells causing them to lose their ability to carry oxygen (Freeman and Kodera, 1995). Allicin also decreases ocular pressure (Agarwal, 1996; Block, 1992; Chu et al., 1993). In addition to this, allicin affects the processing of DNA and RNA synthesis (Feldberg et al., 1988). Table 1 showed the chemical compounds found in the garlic bulb. Generally garlic bulb contains approximately 65% water, 28% carbohydrates (mainly fructans), 2.3% organosulfur compounds, 2% protein (mainly alliin), 1.2% free amino acids (mainly arginine), and 1.5% fiber (Blumenthal et al., 2000).

Table 1

Chemical compounds found in garlic bulb (105).

Chemical compoundAmount (ppm)
1,2-Dimercaptocyclopentane2.4
1,3-Dithiane0.08–3
2-Vinyl-4H-1,3-dithiin2–29
3,5-Diethyl-1,2,4-trithiolane0.15–43
3-Vinyl-4H-1,2-dithiin0.34–10.65
Alanine1320–31,168
Allicin1500–27,800
Alliin5000–10,000
Allyl-propyl-disulfide36–216
Aluminium52
Aniline10
Arginine6340–15,216
Ascorbic acid100–788
Aspartic acid4890–11,736
Beta-carotene0.17
Biotin22
Boron3–6
Caffeic acid20
Calcium180–4947
Carbohydrates274,000–851,000
Chromium2.5–15
Cobalt0.5–100
Copper4.8–9.7
Cystine650–1560
Diallyl-disulfide16–613
Diallyl-sulfide2–99
Diallyl-trisulfide10–1061
Dimethyl-difuran5–30
Dimethyl-disulfide0.6–2.5
Dimethy-trisulfide0.8–19
Fat2000–12,000
Ferulic acid27
Fiber7000–39,000
Glutamic acid8050–19,320
Glycine2000–4800
Histidine1130–2712
Iron15–129
Isobutyl-isothiocyanate0.14–25
Isoleucine2170–5208
Leucine3050–7392
Lysine2730–6552
Magnesium240–1210
Manganese5.4–15.3
Methyl-allyl-disulfide6–104
Methyl-allyl-sulfide0.5–4.6
Methyl-allyl-trisulfide6–279
Methyl-propyl-disulfide0.03–0.66
Niacin4–17
Nickel1.5–1.7
Nicotinic acid4.8
P-coumaric acid58
Phenylalanine1830–4392
Phosphorus880–5220
Potassium3730–13,669
Proline1000–2400
Propenethiol1–41
Protein35,000–179,000
Protodegalactotigonin10
Protoeruboside-B100
Quercetin200
Riboflavin0.5–3
S-(2-carboxy-propyl)-glutathione92.5
S-allo-mercapto-cysteine2
S-allyl-cysteine10
Sativoside-B-130
Scordinine250
Scordinine-A39,000
Scordinine-A-167–30,000
Scordinine-A-2250–8000
Scordinine-B800
Scorodinine-A-3333
Serine1900–4560
Sodium158–559
Thiamine2–8
Threonine1570–3768
Tin6
Trans-ajoene268
Tryptophan660–1584
Tyrosine810–1944
Valine2910–6984
Water585,000–678,000
Zinc15.3

1.2. Possible mechanism in cancer

Several individual compounds have been isolated from garlic and two major groups of compounds that show active anticancer effects have been identified. One group is the lipid-soluble allyl sulfur compounds such as diallyl disulfide (DADS) and diallyl trisulfide (DATS), and the other one is the water-soluble compounds γ-glutamyl S-allylcysteine group such as S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC) Thomson and Ali, 2003. There were several mechanisms have been proposed to explain the cancer-preventive effects of garlic and related organosulfur compounds in other Allium vegetables. These include inhibition of mutagenesis, modulation of enzyme activities, inhibition of DNA adduct formation, free-radical scavenging, and effects on cell proliferation and tumor growth. AGE, as the name suggests, produced by aging garlic. Sliced raw garlic stored in 15–20% ethanol for 20months is refereed to as AGE. The AGE garlic acts on several fronts in blocking prostate cancer growth; inhibiting polyamines needed for cell division, increasing breakdown of testosterone, that is needed for prostate cancer growth and reducing prostate specific antigen (PSA) levels, a prostate cancer marker (Pinto et al., 1997, 2000). Other studies showed that S-allyl mercaptocysteine stops the growth of breast cancer cells, erythroleukemia (Sigounas et al., 1997) and colon cancer cells (Xiao et al., 2003). S-allyl mercaptocysteine prevented colon cancer cell growth by 71%, disrupting cellular microtubules that form the cytoskeleton and the mitotic spindle in cells, thus disrupting cell division. In addition, S-allyl mercaptocysteine induced cell suicide (apoptosis) in the colon cancer cells, by activating apoptosis signalling pathway enzymes, including caspase that ultimately kills the cells (Xiao et al., 2003). Although there is evidence supporting these mechanisms for organosulfur compounds, they are still speculative, and further research is needed to support causality between such properties and the cancer-preventive activity in experimental animals.

1.3. Mutagenesis inhibition

Aqueous and methanolic garlic extracts inhibited the mutagenic activity of aflatoxin B1 in Salmonella typhimurium (Soni et al., 1997). Aqueous garlic extract also decreased the mutagenicity of 4-nitroquinoline-1-oxide in Escherichia coli (Zhang et al., 1989) and the mutagenicity of γ-radiation, hydrogen peroxide, cumene, and t-butyl hydroperoxides in S. typhimurium (Knasmuller et al., 1989).

1.4. Enzyme activities modulation

Organosulfur compounds have been shown to modulate the activity of glutathione S-transferases (GST), a family of enzymes important in detoxification of carcinogens, and cytochromes P450 (CYP), a family of enzymes that activate many chemical carcinogens in experimental animals. Sparnins et al. (1986) first showed that allylmethyltrisulfide (AMTS) increased the activity of GST in the forestomach, small-bowel mucosa, liver, and lung of mice. Other allyl derivatives also increased GST activity in these tissues (Sparnins et al., 1988). Derivatives with a propyl instead of an allyl group were less active or inactive. The induction of GST paralleled the inhibition of benzo[a]pyrene-induced carcinogenesis in the forestomach, but not in the lung, suggesting that increased carcinogen detoxification is only one of the factors responsible for the cancer-preventive effects of organosulfur compounds. These results were partially confirmed by Sumiyoshi and Wargovich (1990), who found a greater effect of thioallyl than thiopropyl derivatives in inducing hepatic and colonic GST in mice. In contrast, DAS did not increase GST activity in mouse liver (Wargovich, 1987) or in a culture of rat hepatocytes (Hayes et al., 1987). The activity of mammary and liver GST was increased by the addition of garlic powder to the diet of rats. The maximum activity of GST did not coincide with maximum inhibition of carcinogenesis, however, further indicating that increased GST activity does not account fully for the protection provided by garlic powder against carcinogenesis. Thus, the effects on enzymes that activate chemical carcinogens are not sufficient to explain the cancer-preventive activity. For example, an oral dose of DAS suppressed esophageal carcinogenesis induced by N-nitrosomethylbenzylamine in rats and significantly reduced the microsomal conversion of this nitrosamine in liver but not in esophagus (Wargovich et al., 1988). In addition, the prevention of benzo[a] pyrene-induced forestomach cancer in mice by organosulfur compounds is not attributable to a reduction in the activity of CYP1A1 (Srivastava et al., 1997). DADS in the diet increased not only the activity of GST but also that of other detoxifying enzymes, including reduced nicotinamide adenine dinucleotide phosphate [NAD (P)H] – dependent quinone oxidoreductase, which is involved in detoxification of activated quinine metabolites of benzo[a]pyrene, and of uridine diphosphate (UDP) – glucuronosyl transferase in rat tissues (Munday and Munday, 1999). DAS acted as a competitive inhibitor of N-dimethylnitrosamine demethylase activity (Brady et al., 1988). It also decreased the activity of CYP2E1 in a time- and dose-dependent manner and induced the activities of CYP2B1 and pentoxy- and ethoxyresorufin dealkylases in hepatic microsomes (Brady et al., 1991). An increase in CYP2B1 mRNA was also observed. Treatment with the DAS metabolites diallyl sulfoxide (DASO) and diallylsulfone (DASO2) had similar effects on rat hepatic monooxygenase activities (Brady et al., 1991; Pan et al., 1993). Reicks and Crankshaw (1996) reported that DAS, DADS, and AMS decreased p-nitrophenol hydroxylase activity and CYP2E1 protein concentration in rat liver. When the diet of rats was supplemented with DAS/DADS, DADS increased the activities of several monooxygenases and transferases in intestine and liver; the protein levels of epoxide hydrolase and CYP2B1/2 were also increased. DADS also decreased CYP2E1 level in liver. The effects of DAS were similar to those of DADS in liver, but only epoxide hydrolase activity and CYP2B1/2 protein levels were increased in the intestine. In a study of the effect of garlic oil, DAS, and DADS on the activities of several metabolizing enzymes in the liver of rats fed high-fat diets (Sheen et al., 1999), GST activity was increased by all treatments. Garlic oil induced the expression of the placental form of GST and CYP2B1 and decreased the expression of CYP2E1. DAS and DADS also modulated these enzymes, but DAS increased mainly CYP2B1, whereas DADS increased mainly GST activity; similar effects were observed on CYP2E1 expression. DAS and its oxidation derivatives DASO and DASO2 are conjugated with glutathione, in rats (Jin and Baillie, 1997). No study has investigated the effects of possible GST polymorphisms in the deactivation of these Allium vegetable-derived compounds, although this could provide some explanations of differential effects in humans. Modulation of the activity of arylamine N-acetyltransferase, a polymorphic enzyme that deactivates arylamines and activates some heterocyclic dietary amines, was addressed in a few studies. The slow and fast acetylator phenotypes have been associated with increased risk for cancers of the bladder and colon, respectively. DAS and DADS decreased the activity of this enzyme in strains of Helicobacter pylori from peptic ulcer patients (Chung et al., 1998) and inhibited its activity in a human colon tumor cell line (Chen et al., 1998) and in human bladder tumor cells (Chung, 1999) in a dose-dependent manner.

1.5. Inhibitions of DNA adduct formation

DNA adducts are believed to be an initial step in carcinogenesis by chemicals. In rat mammary gland, garlic powder decreased the occurrence of 7,12-dimethylbenz[a]anthracene (DMBA)–DNA adducts in vivo and the amounts of total and individual adducts correlated positively with mammary tumor incidence. Garlic powder, garlic water extract, a deodorized garlic powder, a garlic powder with a high sulfur content, and SAC were also effective against mammary DMBA–DNA binding (Amagase and Milner, 1993). DNA adducts induced by incubation of human bladder tumor cells with 2-aminofluorene were inhibited by DAS and DADS (Chung, 1999). In contrast, a water extract of raw garlic and SAC, but not DAS, significantly inhibited benzo[a]pyrene–DNA adduct formation in simulated human peripheral blood lymphocytes in vitro (Hageman et al., 1997). N-Nitroso compounds, a class of potential human carcinogens that can be synthesized in humans from precursors present in the diet, are metabolized to alkylating agents that can bind to DNA. Shenoy and Choughuley (1992) showed that onion and garlic juices inhibit the nitrosation reactions in vitro in a dose-dependent manner. The occurrence of 7-methyldeo-xyguanosine (7-MedG) and O6-ethyldeoxyguanosine (O6-MedG) was decreased in rat liver when garlic powder was added to a diet containing aminopyrine and sodium nitrite (Lin et al., 1994). Garlic powder also decreased DNA methylation in the livers of rats treated with N-nitrosodimethylamine and in mammary tissue of rats treated with N-methylnitrosourea. Garlic, SAC, and DADS also decreased the formation of 7-MedG and O6-MedG induced by N-methylnitrosourea in mammary DNA; this decrease correlated with the inhibition of mammary tumors by these compounds (Schaffer et al., 1996).

1.6. Free-radical scavenging

Free radicals have been related to several age-related diseases, including cancer (Ames et al., 1993). Reduced glutathione (GSH) is not only a cofactor for GST but also serves as a reductant for glutathione peroxidase (GPX), an enzyme involved in natural protection by free radicals, in addition to superoxide dismutase and catalase. Garlic and onion oils stimulated the activity of GPX and inhibited the decreased ratio of reduced to oxidized glutathione produced by 12-O-tetradecanoylphorbol-13-acetate in epidermal cells (Perchellet et al., 1986). GPX activity was also increased in animal tissues with DAS, DADS and garlic oil (Sheen et al., 1999). DAS and DADS also increased the activity of glutathione reductase, and garlic oil increased the activity of superoxide dismutase (Sheen et al., 1999). In contrast, DAS and garlic hom*ogenates decreased catalase in the livers of rats and mice (Chen et al., 1999). S-Allylmercaptosysteine (SAMC) and SAC increased the synthesis of GSH in human prostate cancer cells (Pinto et al., 1997). Aged garlic extract, SAC, and SAMC exhibited radical scavenging activity (Imai et al., 1994). DAS, DADS, and AMS showed selective actions on different markers in tests for their ability to react with carbon tetrachloride de-rived free radicals (Fanelli et al., 1998). DADS also inhibited carbon tetrachloride-induced lipid peroxidation. The antioxidant properties of Allium vegetables might therefore result from the contributions of various sulphur components at different steps of the process.

1.7. Effects on cell proliferation, apoptosis and tumor growth

Inhibition of tumor cell proliferation by organosulfur compounds has been reported in several studies using different cell cultures, including canine mammary tumor cells (Sundaram and Milner, 1993), human colon, lung, and skin tumor cell lines (Sundaram and Milner, 1996; Sakamoto et al., 1997), human neuroblastoma cells (Welch et al., 1992), human and murine melanoma cells (Takeyama et al., 1993), and human prostatic carcinoma cells (Pinto et al., 1997). Contradictory results have been obtained with regard to modulation of the proliferative activity of non-neoplastic cell lines by organosulfur compounds, with some studies showing inhibition (Lee et al., 1994; Seki et al., 2000). Garlic and onion oils caused a marked suppression of proliferation of human promyelocytic leukemia cells (Seki et al., 2000). Garlic powder and an alliin-enriched garlic extract inhibited the growth of a human lymphatic leukemia cell line in a dose-dependent manner, but inhibited the growth of human hepatoma and human colorectal carcinoma cells only when applied as a mixture. This finding indicates that the antiproliferative effect of garlic is due to breakdown pro-ducts of alliin catalyzed by the alliinase enzyme system present in garlic powder (Siegers et al., 1999).

Polyamines, mainly spermine, play an important role in cell division and differentiation. SAMC, but not SAC, has been shown to alter polyamine concentrations in human prostate carcinoma cells, increasing that of spermidine and decreasing those of putrescine and spermine (Pinto et al., 1997). Ornithine decarboxylase, a rate-limiting enzyme involved in the synthesis of polyamines, is also reduced by DAS (Perchellet et al., 1986; Baer and Wargovich, 1989), although there is evidence of an increase in the livers of rat not treated with initiators (Takada et al., 1994). Apoptosis (also known as programmed cell death) is a tightly controlled and evolutionarily conserved process of cellular suicide critical to normal embryonic development and maintenance of tissue homeostasis. Deregulation of programmed cell death underlies numerous pathological conditions including cancer and, therefore, apoptosis is a valid target in cancer therapy and prevention (Kaufmann and Gores, 2000; Ghobrial et al., 2005). The antiproliferative effect of organosulfur compounds appears to be related to the induction of apoptosis. Exposure to DADS and DATS caused cells to undergo apoptosis, as determined by morphologic changes and/or DNA fragmentation (Sundaram and Milner, 1996; Sakamoto et al., 1997). A positive correlation was found between DADS-induced DNA fragmentation and increased intracellular free-calcium concentration, which may activate calcium-dependent endonucleases leading to apoptosis. A study (Hong et al., 2000) showed that DAS, DADS, and garlic extract increase the number of non-small-cell lung cancer cells in the apoptotic state. This increase followed the induction of p53 protein by DADS or the increase of the expression of Bax and decrease of the expression of Bcl-2 by DAS and garlic extract. Ajoene induced apoptosis in human leukemic cells but not in peripheral mononuclear blood cells from healthy donors (Dirsch et al., 1998).

1.8. Inhibition of cell cycle progression

The cell cycle was also affected by DADS, which decreased the percentage of human colon tumor cells in the G1 and S phases and concomitantly increased the percentage of those in the G2/M phase (Knowles and Milner, 1998). These effects depended on the dose of DADS and the length of incubation. The ability of DADS to inhibit cell proliferation was related to induction of G2/M phase arrest and to inhibition of p34cdc2 kinase activity, which modulates the progression of cells from G2 into the M phase of the cell cycle. The suppression of the p34cdc2 kinase activity by DADS resulted not from a direct inter-action with the protein but from modulation of the factors involved in the formation and conversion of the enzyme to its active form (Knowles and Milner, 2000). DADS also significantly inhibited the growth of H-ras oncogene transformed tumors implanted in nude mice by suppressing the association of p21H-ras with the cell membrane (Singh et al., 1996).

2. Conclusion

Garlic (Allium sativum) is among the oldest of all cultivated plants. The garlic compounds appear to target multiple pathways, including the mutagenesis inhibition, enzyme activities modulation, inhibition of DNA adduct, affecting the intrinsic pathway for apoptotic cell death and cell cycle machinery which may all contribute to their anticancer activities. It has been suggested that anticancer effect is due to the organosulfur compounds in the garlic and act through induction of phase II detoxification enzymes. It is possible that diallyl disulfide and diallyl trisulfide is important in the anticancer action of garlic. More than one compound is responsible for the anticancer properties of garlic. The peak plasma concentration of DATS in rats following treatment with 10mg of the compound was shown to be about 31μmol/L. Although the pharmaco*kinetic parameters for DATS in humans have not yet been measured, oral administration of 200mg of synthetic DATS (also known as allitridum) in combination with 100μg selenium every other day for 1month to humans did not cause any harmful side effects. Future research should focus on clinical assessment of these compounds for prevention/treatment of cancers in humans.

References

  • Agarwal K.C. Therapeutic actions of garlic constituents. Med. Res. Rev. 1996;16:111–124. [PubMed] [Google Scholar]
  • Budavari, S. (Ed.), 1989. The Merck Index, 11th ed. Merck and Co. Rahway, New Jersey, Allicin, p. 244.
  • Amagase, H., Milner, J.A., 1993. Impact of various sources of garlic and their constituents on 7,12-dimethylbenz[a]anthracene binding to mammary cell DNA. Carcinogenesis 14, 1627–1631. [PubMed]
  • Ames B.N., Shigenaga M.K., Hagen T.M. Oxidants, anti-oxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. 1993;90:7915–7922. [PMC free article] [PubMed] [Google Scholar]
  • Augusti K.T., Sheela C.G. Antiperoxide effect of S-allyl cysteine sulfoxide, an insulin secretagogue, in diabetic rats. Experientia. 1996;52:115–120. [PubMed] [Google Scholar]
  • Baer A.R., Wargovich M.J. Role of ornithine decarboxylase in diallyl sulfide inhibition of colonic radiation injury in the mouse. Cancer Res. 1989;49:5073–5076. [PubMed] [Google Scholar]
  • Blackwood John, Fulder Stephen, 1987. Garlic: Nature’s Original Remedy Poole, Javelin. Inner Traditions Paperback.
  • Blania G., Spangenberg B. Formation of allicin from dried garlic (Allium sativum): a simple HPTLC method for simultaneous determination of allicin and ajoene in dried garlic and garlic preparations. Planta Med. 1991;57:371–375. [PubMed] [Google Scholar]
  • Block E. The chemistry of garlic and onions. Sci. Am. 1985;252:114–119. [PubMed] [Google Scholar]
  • Block E. The organosulphur chemistry of the genus Allium: implications for the organic chemistry of sulphur. Angew. Chem. Int. Ed. Engl. 1992;31:1135–1178. [Google Scholar]
  • Blumenthal, M., Goldberg, A., Brinkman, J., 2000. Herbal Medicine: Expanded German Commission E. American Botanical Council, Austin, TX, pp. 130–133.
  • Brady J.F., Li D.C., Ishizaki H., Yang C.S. Effect of diallyl sulfide on rat liver microsomal nitrosamine metabolism and other monooxygenase activities. Cancer Res. 1988;48:5937–5940. [PubMed] [Google Scholar]
  • Brady J.F., Wang M.H., Hong J.Y., Xiao F., Li Y., Yoo J.S., Ning S.M., Lee M.J., f*ckuto, Gapac J.M., Yang C.S. Modulation of rat hepatic microsomal monooxygenase enzymes and cytotoxicity by diallyl sulfide. Toxicol. Appl. Pharmacol. 1991;108:342–354. [PubMed] [Google Scholar]
  • Cavallito C.J., Bailey J.H. Allicin, the antibacterial principle of Allium sativum. Isolation, physical properties and antibacterial action. J. Am. Chem. Soc. 1944;66:1950–1951. [Google Scholar]
  • Chen G.W., Chung J.G., Hsieh C.L., Lin J.G. Effects of the garlic components diallyl sulfide and diallyl disulfide on arylamine N-acetyltransferase activity in human colon tumor cells. Food Chem. Toxicol. 1998;36:761–770. [PubMed] [Google Scholar]
  • Chen L., Hong J.Y., So E., Hussin A.H., Cheng W.F., Yang C.S. Decrease of hepatic catalase level by treatment with diallyl sulfide and garlic hom*ogenates in rats and mice. J. Biochem. Mol. Toxicol. 1999;13:127–134. [PubMed] [Google Scholar]
  • Chu T.C., Ogidigben M., Han J.C., Potter D.E. Allicin induced hypotension in rabbit eyes. J. Ocul. Pharmacol. 1993;9:201–209. [PubMed] [Google Scholar]
  • Chung J.G. Effects of garlic components diallyl sulfide and diallyl disulfide on arylamine N-acetyltransferase activity in human bladder tumor cells. Drug Chem. Toxicol. 1999;22:343–358. [PubMed] [Google Scholar]
  • Chung J.G., Chen G.W., Wu L.T., Chang H.L., Lin J.G., Yeh C.C., Wang T.F. Effects of garlic compounds diallyl sulphide and diallyl disulphide on arylamine N-acetyltransferase activity in strains of Helicobacter pylori from peptic ulcer patients. Am. J. Chin. Med. 1998;26:353–364. [PubMed] [Google Scholar]
  • Dirsch V.M., Gerbes A.L., Vollmar A.M. Ajoene, a compound of garlic, induces apoptosis in human promyeloleukemic cells, accompanied by generation of reactive oxygen species and activation of nuclear factor kB. Mol. Pharmacol. 1998;53:402–407. [PubMed] [Google Scholar]
  • Egen-Schwind C., Eckard R., Kemper F.H. Metabolism of garlic constituents in the isolated perfused rat liver. Planta Med. 1992;58:301–305. [PubMed] [Google Scholar]
  • Fanelli S.L., Castro G.D., de Toranzo E.G., Castro J.A. Mechanisms of the preventive properties of some garlic components in the carbon tetrachloride-promoted oxidative stress. Diallyl sulfide, diallyl disulfide, allyl mercaptan and allyl methyl sulfide. Res. Commun. Mol. Pathol. Pharmacol. 1998;102:163–174. [PubMed] [Google Scholar]
  • Feldberg R.S., Chang S.C., Kotik A.N., Nadler M., Neuwirth Z., Sundstrom D.C., Thompson N.H. In vitro mechanism of inhibition of bacterial cell growth by allicin. Antimicrob. Agent. Chemother. 1988;32:1763–1768. [PMC free article] [PubMed] [Google Scholar]
  • Fleischauer A.T., Arab L. Garlic and cancer: a critical review of the epidemiologic literature. J. Nutr. 2001;131:1032S–1040S. [PubMed] [Google Scholar]
  • Fleischauer A.T., Poole C., Arab L. Garlic consumption and cancer prevention: meta analyses of colorectal and stomach cancers. Am. J. Clin. Nutr. 2000;72:1047–1052. [PubMed] [Google Scholar]
  • Freeman F., Kodera Y. Garlic chemistry: stability of s-(2-propenyl)-2-propene-1-sulfinothioate (allicin) in blood, solvents, and simulated physiological fluids. J. Agric. Food Chem. 1995;43:2332–2338. [Google Scholar]
  • Ghobrial I.M., Witzig T.E., Adjei A.A. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin. 2005;55:178–194. [PubMed] [Google Scholar]
  • Hageman G.J., Van Herwijnen M.H., Schilderman P.A., Rhijnsburger E.H., Moonen E.J., Kleinjans J.C. Reducing effects of garlic constituents on DNA adduct formation in human lymphocytes in vitro. Nutr. Cancer. 1997;27:177–185. [PubMed] [Google Scholar]
  • Hahn, G., 1996. Garlic: The Science and Therapeutic Application of Allium sativum L. and Related Species (second ed.). In: Koch, H.P., Lawson, L.D. (Eds.), Baltimore Williams and Wilkins, pp. 1–24.
  • Hayes M.A., Rushmore T.H., Goldberg M.T. Inhibition of hepatocarcinogenic responses to 1,2-dimethylhydrazine by diallyl sulfide, a component of garlic oil. Carcinogenesis. 1987;8:1155–1157. [PubMed] [Google Scholar]
  • Hong Y.S., Ham Y.A., Choi J.H., Kim J. Effects of allyl sulfur compounds and garlic extract on the expression of Bcl-2, Bax, and p53 in non small cell lung cancer cell lines. Exp. Mol. Med. 2000;32:127–134. [PubMed] [Google Scholar]
  • Hussain S.P., Jannu L.N., Rao A.R. Chemopreventive action of garlic on methyl-cholanthrene induced carcinogenesis in the uterine cervix of mice. Cancer Lett. 1990;49:175–180. [PubMed] [Google Scholar]
  • Imai J., Ide N., Nagae S., Moriguchi T., Matsuura H., Itakura Y. Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Med. 1994;60:417–420. [PubMed] [Google Scholar]
  • Jin L., Baillie T.A. Metabolism of the chemoprotective agent diallyl sulfide to glutathione conjugates in rats. Chem. Res. Toxicol. 1997;10:318–327. [PubMed] [Google Scholar]
  • Kaufmann S.H., Gores G.J. Apoptosis in cancer: cause and cure. Bioessays. 2000;22:1007–1017. [PubMed] [Google Scholar]
  • Knasmuller S., de Martin R., Domjan G., Szakmary A. Studies on the antimutagenic activities of garlic extract. Environ. Mol. Mutagen. 1989;13:357–385. [PubMed] [Google Scholar]
  • Knowles L.M., Milner J.A. Depressed p34cdc2 kinase activity and G2/M phase arrest induced by diallyl disulfide in HCT-15 cells. Nutr. Cancer. 1998;30:169–174. [PubMed] [Google Scholar]
  • Knowles L.M., Milner J.A. Diallyl disulfide inhibits p34(cdc2) kinase activity through changes in complex formation and phosphorylation. Carcinogenesis. 2000;21:1129–1134. [PubMed] [Google Scholar]
  • Lee E.S., Steiner M., Lin R. Thioallyl compounds: potent inhibitors of cell proliferation. Biochim. Biophys. Acta. 1994;1221:73–77. [PubMed] [Google Scholar]
  • Lin X.Y., Liu J.Z., Milner J.A. Dietary garlic suppresses DNA adducts caused by N-nitrosocompounds. Carcinogenesis. 1994;15:349–352. [PubMed] [Google Scholar]
  • Mahady, G.B., Fong, H.H.S., Farnsworth, N.R., 2001. Botanical Dietary Supplements: Quality, Safety and Efficacy. Swets & Zeitlinger, Lisse, The Netherland.
  • Makheja A.N., Bailey J.M. Antiplatelet constituents of garlic and onion. Agent. Action. 1990;29:360–363. [PubMed] [Google Scholar]
  • Milner J.A. Garlic: its anticarcinogenic and antitumorigenic properties. Nutr. Rev. 1996;54:S82–S86. [PubMed] [Google Scholar]
  • Milner J.A. Functional food and health promotion. J. Nutr. 1999;129:1395S–1397S. [PubMed] [Google Scholar]
  • Miron T., Rabinkov A., Mirelman D., Wilchek M., Weiner L. The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochem. Biophys. Acta. 2000;1463:20–30. [PubMed] [Google Scholar]
  • Moore G.S., Atkins R.D. The fungicidal and fungistatic effects of an aqueous garlic extract on medically important yeast like fungi. Mycologia. 1997;69:341–348. [PubMed] [Google Scholar]
  • Munday R., Munday C.M. Low doses of diallyl disulfide, a compound derived from garlic, increase tissue activities of quinone reductase and glutathione transferase in the gastrointestinal tract of the rat. Nutr. Cancer. 1999;34:42–48. [PubMed] [Google Scholar]
  • Newall C.A., Anderson L.A., Phillipson J.D. Pharmaceutical Press; London: 1996. Herbal medicines: a guide for health-care professionals, vol. ix. p. 296. [Google Scholar]
  • Orekhov A.N., Grunwald J. Effects of garlic on atherosclerosis. Nutrition. 1997;3:656–663. [PubMed] [Google Scholar]
  • Pan J., Hong J.Y., Li D., Schuetz E.G., Guzelian P.S., Huang W., Yang C.S. Regulation of cytochrome P450 2B1/2 genes by diallyl sulfone, disulfiram, and other organosulfur compounds in primary cultures of rat hepatocytes. Biochem. Pharmacol. 1993;45:2323–2329. [PubMed] [Google Scholar]
  • Perchellet J.P., Perchellet E.M., Abney N.L., Zirnstein J.A., Belman S. Effects of garlic and onion oils on glutathione peroxidase activity, the ratio of reduced/oxidized glutathione and ornithine decarboxylase induction in isolated mouse epidermal cells treated with tumor promoters. Cancer Biochem. Biophys. 1986;8:299–312. [PubMed] [Google Scholar]
  • Pinto J.T., Qiao C., Xing J., Rivlin R.S., Protomastro M.L., Weissler M.L., Tao Y., Thaler H., Heston W.D. Effects of garlic thioallyl derivatives on growth, glutathione concentration and polyamine formation of human prostate carcinoma cells in culture. Am. J. Clin. Nut. 1997;66:398–405. [PubMed] [Google Scholar]
  • Pinto J.T., Qiago C., Xing J., Suffoletto B.P., Schubert K.B., Rivlin R.S., Huryk R.F., Bacich D.J., Heston W.D. Alteration of prostate biomarker expression and testosterone utilization in human LNCaP prostate carcinoma cells by garlic derived S-allylmercaptocysteine. Prostate. 2000;45:304–314. [PubMed] [Google Scholar]
  • Rabinkov A., Miron T., Konstantinovski L., Wilchek M., Mirelman D., Weiner L. The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins. Biochim. Biophys. Acta. 1998;1379:233–244. [PubMed] [Google Scholar]
  • Reicks M.M., Crankshaw D.L. Modulation of rat hepatic cytochrome P-450 activity by garlic organosulfur compounds. Nutr. Cancer. 1996;25:241–248. [PubMed] [Google Scholar]
  • Sakamoto K., Lawson L.D., Milner J.A. Allyl sulfides from garlic suppress the in vitro proliferation of human A549 lung tumor cells. Nutr. Cancer. 1997;29:152–156. [PubMed] [Google Scholar]
  • Schaffer E.M., Liu J.Z., Green J., Dangler C.A., Milner J.A. Garlic and associated allyl sulfur components inhibit N-methyl-N-nitrosourea induced rat mammary carcinogenesis. Cancer Lett. 1996;102:199–204. [PubMed] [Google Scholar]
  • Seki T., Tsuji K., Hayato Y., Moritomo T., Ariga T. Garlic and onion oils inhibit proliferation and induce differentiation of HL-60 cells. Cancer Lett. 2000;160:29–35. [PubMed] [Google Scholar]
  • Sheela C.G., Kumud K., Augusti K.T. Anti-diabetic effects of onion and garlic sulfoxide amino acids in rats. Planta Med. 1995;61:356357. [PubMed] [Google Scholar]
  • Sheen L.Y., Chen H.W., Kung Y.L., Liu C.T., Lii C.K. Effects of garlic oil and its organosulfur compounds on the activities of hepatic drug-metabolizing and antioxidant enzymes in rats fed high- and low-fat diets. Nutr. Cancer. 1999;35:160–166. [PubMed] [Google Scholar]
  • Shenoy N.R., Choughuley A.S. Inhibitory effect of diet related sulphydryl compounds on the formation of carcinogenic nitrosamines. Cancer Lett. 1992;65:227–232. [PubMed] [Google Scholar]
  • Siegers C.P., Steffen B., Robke A., Pentz R. The effects of garlic preparations against human tumor cell proliferation. Phytomedicine. 1999;6:7–11. [PubMed] [Google Scholar]
  • Sigounas G., Hooker J., Angnostou A., Steiner M. S-allyl mercaptocysteine inhibits cell proliferation and reduces the viability of erythroleukemia, breast and prostate cancer cell lines. Nutr. Cancer. 1997;27:186–191. [PubMed] [Google Scholar]
  • Singh S.V., Mohan R.R., Agarwal R., Benson P.J., Hu X., Rudy M.A., Xia H., Katoh A., Srivastava S.K., Mukhtar H., Gupta V., Zaren H.A. Novel anti-carcinogenic activity of an organosulfide from garlic: inhibition of H-RAS oncogene transformed tumor growth in vivo by diallyl disulfide is associated with inhibition of p21H-ras processing. Biochem. Biophys. Res. Commun. 1996;225:660–665. [PubMed] [Google Scholar]
  • Soni K.B., Lahiri M., Chackradeo P., Bhide S.V., Kuttan R. Protective effect of food additives on aflatoxin-induced mutagenicity and hepatocarcinogenicity. Cancer Lett. 1997;115:129–133. [PubMed] [Google Scholar]
  • Sparnins V.L., Mott A.W., Barany G., Wattenberg L.W. Effects of allyl methyl trisulfide on glutathione S-transferase activity and BP-induced neoplasia in the mouse. Nutr. Cancer. 1986;8:211–215. [PubMed] [Google Scholar]
  • Sparnins V.L., Barany G., Wattenberg L.W. Effects of organosulfur compounds from garlic and onions on benzo[a]pyrene-induced neoplasia and glutathione S-transferase activity in the mouse. Carcinogenesis. 1988;9:131–134. [PubMed] [Google Scholar]
  • Srivastava K.C., Bordia A., Verma S.K. Garlic (Allium sativum) for disease prevention. South African J. Sci. 1995;91:68–77. [Google Scholar]
  • Srivastava S.K., Hu X., Xia H., Zaren H.A., Chatterjee M.L., Agarwal R., Singh S.V. Mechanism of differential efficacy of garlic organosulfides in preventing benzo[a]pyrene-induced cancer in mice. Cancer Lett. 1997;118:61–67. [PubMed] [Google Scholar]
  • Stoll A., Seebeck E. Chemical investigations of alliin, the specific principle of garlic. Adv. Enzymol. 1951;11:377–400. [PubMed] [Google Scholar]
  • Sumiyoshi H., Wargovich M.J. Chemoprevention of 1,2-dimethylhydrazine-induced colon cancer in mice by naturally occurring organosulfur compounds. Cancer Res. 1990;50:5084–5087. [PubMed] [Google Scholar]
  • Sundaram S.G., Milner J.A. Impact of organosulfur compounds in garlic on canine mammary tumor cells in culture. Cancer Lett. 1993;74:85–90. [PubMed] [Google Scholar]
  • Sundaram S.G., Milner J.A. Diallyl disulfide induces apoptosis of human colon tumor cells. Carcinogenesis. 1996;17:669–673. [PubMed] [Google Scholar]
  • Takada N., Matsuda T., Otoshi T., Yano Y., Otani S., Hasegawa T., Nakae D., Konishi Y., f*ckushima S. Enhancement by organosulfur compounds from garlic and onions of diethylnitrosamine-induced glutathione S-transferase positive foci in the rat liver. Cancer Res. 1994;54:2895–2899. [PubMed] [Google Scholar]
  • Takeyama H., Hoon D.S., Saxton R.E., Morton D.L., Irie R.F. Growth inhibition and modulation of cell markers of melanoma by S-allyl cysteine. Oncology. 1993;50:63–69. [PubMed] [Google Scholar]
  • Thomson M., Ali M. Garlic [Allium sativum]: a review of its potential use as an anti-cancer agent. Curr. Cancer Drug. Target. 2003;3:67–81. [PubMed] [Google Scholar]
  • Wargovich M.J. Diallyl sulfide, a flavour compound of garlic (Allium sativum), inhibits dimethylhydrazine-induced colon cancer. Carcinogenesis. 1987;8:487–489. [PubMed] [Google Scholar]
  • Wargovich M.J., Woods C., Eng V.W., Stephens L.C., Gray K. Chemoprevention of N-nitrosomethyl-benzylamine induced esophageal cancer in rats by the naturally occurring thioether, diallyl sulfide. Cancer Res. 1988;48:6872–6875. [PubMed] [Google Scholar]
  • Welch C., Wuarin L., Sidell N. Antiproliferative effect of the garlic compound S-allyl cysteine on human neuroblastoma cells in vitro. Cancer Lett. 1992;63:211–219. [PubMed] [Google Scholar]
  • Xiao D., Pinto J.T., Soh J.W., Deguchi A., Gundersen G.G., Palazzo A.F., Yoon J.T., Shirin H., Weinstein I.B. Induction of apoptosis by the garlic derived compound S-mercaptocysteine (SAMC) is associated with microtubule depolymerization and c-Jun NH2-terminal kinase 1 activation. Cancer Res. 2003;63:6825–6837. [PubMed] [Google Scholar]
  • Yu T.H., Wu C.M. Stability of allicin in garlic juice. J. Food Sci. 1989;54:977–981. [Google Scholar]
  • Zhang Y.S., Chen X.R., Yu Y.N. Antimutagenic effect of garlic (Allium sativum L.) on 4NQO-induced mutagenesis in Escherichia coli WP20. Mutat Res. 1989;227:215–219. [PubMed] [Google Scholar]

Articles from Saudi Pharmaceutical Journal : SPJ are provided here courtesy of Elsevier

Organosulfur compounds and possible mechanism of garlic in cancer (2024)
Top Articles
Video Card Overclocking for Ravencoin (RVN) and FIRO Mining –...
Discount Should be Entered as a Positive Value, Not a Negative One
Ron Martin Realty Cam
Riverrun Rv Park Middletown Photos
Davita Internet
Methstreams Boxing Stream
Restaurer Triple Vitrage
Aadya Bazaar
Usborne Links
How Much Is 10000 Nickels
5 Bijwerkingen van zwemmen in een zwembad met te veel chloor - Bereik uw gezondheidsdoelen met praktische hulpmiddelen voor eten en fitness, deskundige bronnen en een betrokken gemeenschap.
The Haunted Drury Hotels of San Antonio’s Riverwalk
Tamilblasters 2023
Azeroth Pilot Reloaded - Addons - World of Warcraft
Best Restaurants Ventnor
Ssefth1203
Flower Mound Clavicle Trauma
Darksteel Plate Deepwoken
2024 U-Haul ® Truck Rental Review
Midlife Crisis F95Zone
Munich residents spend the most online for food
Sonic Fan Games Hq
ARK: Survival Evolved Valguero Map Guide: Resource Locations, Bosses, & Dinos
E22 Ultipro Desktop Version
Kamzz Llc
Geometry Review Quiz 5 Answer Key
Lola Bunny R34 Gif
Sussyclassroom
Hdmovie2 Sbs
Blackboard Login Pjc
Firefly Festival Logan Iowa
What we lost when Craigslist shut down its personals section
Tas Restaurant Fall River Ma
No Hard Feelings Showtimes Near Tilton Square Theatre
Devotion Showtimes Near Mjr Universal Grand Cinema 16
Duff Tuff
Los Garroberros Menu
10 games with New Game Plus modes so good you simply have to play them twice
How are you feeling? Vocabulary & expressions to answer this common question!
ENDOCRINOLOGY-PSR in Lewes, DE for Beebe Healthcare
Babbychula
2700 Yen To Usd
Aita For Announcing My Pregnancy At My Sil Wedding
Free Crossword Puzzles | BestCrosswords.com
Actress Zazie Crossword Clue
The Largest Banks - ​​How to Transfer Money With Only Card Number and CVV (2024)
Windy Bee Favor
Underground Weather Tropical
Tanger Outlets Sevierville Directory Map
Suzanne Olsen Swift River
Latest Posts
Article information

Author: Melvina Ondricka

Last Updated:

Views: 6288

Rating: 4.8 / 5 (48 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Melvina Ondricka

Birthday: 2000-12-23

Address: Suite 382 139 Shaniqua Locks, Paulaborough, UT 90498

Phone: +636383657021

Job: Dynamic Government Specialist

Hobby: Kite flying, Watching movies, Knitting, Model building, Reading, Wood carving, Paintball

Introduction: My name is Melvina Ondricka, I am a helpful, fancy, friendly, innocent, outstanding, courageous, thoughtful person who loves writing and wants to share my knowledge and understanding with you.