1.14: Factoring a Monomial from a Polynomial and GCF (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    45437
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We have learned how to multiply polynomials. For example using the distributive property on \(2 x(x-1)\) we get \(2 x^{2}-2 x\) or using \(\mathrm{FOlL}\) on \((x+1)(2 x-5)\) results in \(2 x^{2}-3 x-5 .\) Factoring is an inverse procedure of multiplying polynomials. If we write \(2 x^{2}-2 x=2 x(x-1)\) or \(2 x^{2}-3 x-5=(x+1)(2 x-5),\) this is called factoring. In general, factoring is a procedure to write a polynomial as a product of two or more polynomials. In the first example \(2 x\) and \((x-1)\) are called factors of \(2 x^{2}-2 x .\) In the second example \((x+1)\) and \((2 x-5)\) are factors of \(2 x^{2}-3 x-5\).

    Factoring is extremely useful when we try to solve polynomial equations and simplify algebraic fractions. In the following three chapters, we will learn several methods of factoring.

    Factoring the Greatest Common Factor (GCF)

    In this section we will explain how to factor the greatest common factor (GCF) from a polynomial. The GCF is the largest polynomial that divides every term of the polynomial. For example, the polynomial \(9 x^{3}+6 x^{2}+12 x^{4}\) is the addition of three terms \(9 x^{3}, 6 x^{2}\) and \(12 x^{4}\). From factorization, we have:

    \[9 x^{3}=3 \cdot 3 \cdot x \cdot x \cdot x=\left(3 x^{2}\right)(3 x)\nonumber\]

    \[6 x^{2}=2 \cdot 3 \cdot x \cdot x=\left(3 x^{2}\right)(2)\nonumber\]

    \[12 x^{4}=2 \cdot 2 \cdot 3 \cdot x \cdot x \cdot x \cdot x=\left(3 x^{2}\right)\left(4 x^{2}\right)\nonumber\]

    Therefore, the monomial \(3 x^{2}\) is the \(G C F\) of \(9 x^{3}, 6 x^{2}\) and \(12 x^{4}\). Once the GCF is identified, we can use the distributive property to factor out the GCF as follows:

    \[\begin{align*}
    9 x^{3}+6 x^{2}+12 x^{4} &=3 x^{2}(3 x)+3 x^{2}(2)+3 x^{2}\left(4 x^{2}\right) \\
    &=3 x^{2}\left(3 x+2+4 x^{2}\right)
    \end{align*}\nonumber\]

    Example \(\PageIndex{1}\)

    Factor out the GCF from the given polynomial.

    a) \(6 a^{4}-8 a\)

    The GCF is \(2 a\)

    \[6 a^{4}-8 a=2 a\left(3 a^{3}\right)-2 a(4)=2 a\left(3 a^{3}-4\right)\nonumber\]

    b) \(15 a b^{3} c-10 a^{2} b c+25 b^{2} c^{3}\)

    The GCF is \(5 b c\)

    \[\begin{align*}
    15 a b^{3} c-10 a^{2} b c+25 b^{2} c^{3} &=5 b c\left(3 a b^{2}\right)-5 b c\left(2 a^{2}\right)+5 b c\left(5 b c^{2}\right) \\
    &=5 b c\left(3 a b^{2}-2 a^{2}+5 b c^{2}\right)
    \end{align*}\nonumber\]

    c) \(3 x^{2}-6 x+12\)

    The GCF is 3.

    \[3 x^{2}-6 x+12=3\left(x^{2}\right)-3(2 x)-3(4)=3\left(x^{2}-2 x-4\right)\nonumber\]

    In the problems we have done so far, the first term of the polynomial has been positive. If the first term of the polynomial is negative, it is better to factor the opposite of the GCF. The procedure is exactly the same, but we need to pay attention to the sign of each term.

    Example \(\PageIndex{2}\)

    Factor out the GCF from the given polynomial:

    a) \(-8 x^{2} y+12 x y^{2}-16 x y\)

    The GCF is \(4 x y .\) since the first term of the polynomial is negative, we factor out \(-4 x y\) instead.

    \[\begin{align*}
    -8 x^{2} y+12 x y^{2}-16 x y &=(-4 x y)(2 x)+(-4 x y)(-3 y)+(-4 x y)(4) \\
    &=-4 x y(2 x-3 y+4)
    \end{align*}\nonumber\]

    Note: Inside the parentheses, the sign has been changed for every term in the remaining factor.

    b) \(-9 b^{5}-15 b^{4}+21 b^{3}+27 b^{2}\)

    since the first term is negative, we factor out the opposite of the \(\mathrm{GCF}:-3 b^{2}\)

    \[\begin{align*}
    &-9 b^{5}-15 b^{4}+21 b^{3}+27 b^{2} \\
    =&\left(-3 b^{2}\right)\left(3 b^{3}\right)+\left(-3 b^{2}\right)\left(5 b^{2}\right)+\left(-3 b^{2}\right)(-7 b)+\left(-3 b^{2}\right)(-9) \\
    =&-3 b^{2}\left(3 b^{3}+5 b^{2}-7 b-9\right)
    \end{align*}\nonumber\]

    Again, notice how inside the parentheses, the sign of each of the remaining terms has been changed.

    Factoring Out the Greatest Common Factor (GCF)
    • Step 1: Identify the GCF of each term of the polynomial.
    • Step 2: Write each term of the polynomial as a product of the GCF and remaining factor. If the first term of the polynomial is negative, we use the opposite of the GCF as the common factor.
    • Step 3: Use the distributive property to factor out the GCF.

    Factoring by Grouping

    In many expressions, the greatest common factor may be a binomial. For example, in the expression \(x^{2}(2 x+1)+5(2 x+1)\), the binomial \((2 x+1)\) is a common factor of both terms. So we can factor out this binomial factor as following:

    \[x^{2}(2 x+1)+5(2 x+1)=(2 x+1)\left(x^{2}+5\right)\nonumber\]

    This idea is very useful in factoring a four-term polynomial using the grouping method. For example, \(6 a^{2}-10 a+3 a b-5 b\) is a polynomial with four terms. The GCF of all four terms is \(1 .\) However, if we group the first two terms and the last two terms, we get \(\left(6 a^{2}-10 a\right)+(3 a b-5 b)\). Notice that in the first group, \(2 a\) is a common factor and in the second group, \(b\) is a common factor, so we can factor them out: \(2 a(3 a-5)+b(3 a-5)\). The two terms now have a common binomial factor \(3 a-5\). After factoring it out, we get:

    \[2 a(3 a-5)+b(3 a-5)=(3 a-5)(2 a+b) .\]

    Factoring by grouping is a very useful method when we factor certain trinomials in a later session.

    Example \(\PageIndex{3}\)

    Factor the given polynomials by the grouping method.

    a) \(x^{3}+3 x^{2}+2 x+6\)

    \[\begin{align*}
    x^{3}+3 x^{2}+2 x+6 &=\left(x^{3}+3 x^{2}\right)+(2 x+6) \\
    &=x^{2}(x+3)+2(x+3) \\
    &=(x+3)\left(x^{2}+2\right)
    \end{align*}\nonumber\]

    b) \(6 x^{2}-3 x-2 x y+y\)

    \[\begin{align*}
    6 x^{2}-3 x-2 x y+y &=\left(6 x^{2}-3 x\right)+(-2 x y+y) \\
    &=3 x(2 x-1)+(-y)(2 x-1) \\
    &=(2 x-1)(3 x-y)
    \end{align*}\nonumber\]

    c) \(10 a x+15 a y-8 b x-12 b y\)

    \[\begin{align*}
    10 a x+15 a y-8 b x-12 b y &=(10 a x+15 a y)+(-8 b x-12 b y) \\
    &=5 a(2 x+3 y)+(-4 b)(2 x+3 y) \\
    &=(2 x+3 y)(5 a-4 b)
    \end{align*}\nonumber\]

    Note: In the last two problems of the example, the third term in the polynomial is negative. When grouping, we need to add an extra addition sign between two groups, and in factoring the second group, factoring the opposite of the GCF is helpful.

    Exit Problem

    Factor completely: \(12 a^{5} b^{4} c^{5}-36 a^{6} b^{3} c-24 a b^{2}\)

    Factor by grouping: \(35 x y+21 t y-15 x z-9 t z\)

    1.14: Factoring a Monomial from a Polynomial and GCF (2024)
    Top Articles
    Investing in Bonds? #1 - Stocks are risky. Bonds can be safe investments (video)
    What You Need to Know About Stock Splits
    Drury Inn & Suites Bowling Green
    Forozdz
    Www.1Tamilmv.cafe
    Devon Lannigan Obituary
    Mountain Dew Bennington Pontoon
    Greedfall Console Commands
    Identifont Upload
    Okatee River Farms
    Music Archives | Hotel Grand Bach - Hotel GrandBach
    LeBron James comes out on fire, scores first 16 points for Cavaliers in Game 2 vs. Pacers
    Craigslist Dog Kennels For Sale
    Walmart Windshield Wiper Blades
    Houses and Apartments For Rent in Maastricht
    Las 12 mejores subastas de carros en Los Ángeles, California - Gossip Vehiculos
    Lehmann's Power Equipment
    Missouri Highway Patrol Crash
    Accuweather Mold Count
    Heart and Vascular Clinic in Monticello - North Memorial Health
    Puss In Boots: The Last Wish Showtimes Near Cinépolis Vista
    O'Reilly Auto Parts - Mathis, TX - Nextdoor
    Receptionist Position Near Me
    Sensual Massage Grand Rapids
    Table To Formula Calculator
    Ullu Coupon Code
    Jamielizzz Leaked
    Dairy Queen Lobby Hours
    Desales Field Hockey Schedule
    417-990-0201
    Word Trip Level 359
    Panchang 2022 Usa
    Minecraft Jar Google Drive
    Sedano's Supermarkets Expands to Orlando - Sedano's Supermarkets
    Car Crash On 5 Freeway Today
    Covalen hiring Ai Annotator - Dutch , Finnish, Japanese , Polish , Swedish in Dublin, County Dublin, Ireland | LinkedIn
    Hermann Memorial Urgent Care Near Me
    Ljw Obits
    Eleceed Mangaowl
    SOC 100 ONL Syllabus
    Boggle BrainBusters: Find 7 States | BOOMER Magazine
    Pinellas Fire Active Calls
    Rs3 Bis Perks
    Froedtert Billing Phone Number
    Letter of Credit: What It Is, Examples, and How One Is Used
    Candise Yang Acupuncture
    Phmc.myloancare.com
    La Qua Brothers Funeral Home
    Erica Mena Net Worth Forbes
    Zom 100 Mbti
    Die 10 wichtigsten Sehenswürdigkeiten in NYC, die Sie kennen sollten
    Selly Medaline
    Latest Posts
    Article information

    Author: Rueben Jacobs

    Last Updated:

    Views: 5805

    Rating: 4.7 / 5 (57 voted)

    Reviews: 80% of readers found this page helpful

    Author information

    Name: Rueben Jacobs

    Birthday: 1999-03-14

    Address: 951 Caterina Walk, Schambergerside, CA 67667-0896

    Phone: +6881806848632

    Job: Internal Education Planner

    Hobby: Candle making, Cabaret, Poi, Gambling, Rock climbing, Wood carving, Computer programming

    Introduction: My name is Rueben Jacobs, I am a cooperative, beautiful, kind, comfortable, glamorous, open, magnificent person who loves writing and wants to share my knowledge and understanding with you.